LÉO GOURDIN

https://lgourd.in

25 Boulevard Gambetta \diamond 38000 Grenoble, France

(+33)6 17 49 10 19 \diamond leo.gourdin@univ-grenoble-alpes.fr

EDUCATION

Verimag/TIMA laboratories, UGA, Grenoble, France

2020-2023

PhD, "Formal Validation of Intra-Procedural Transformations by Defensive Symbolic Simulation" Supervised by Sylvain Boulmé and Frédéric Pétrot

ENSIMAG, UGA, Grenoble, France

2017 - 2020

Engineering (Master) degree — Work-study contract

Aalto University, Helsinki, Finland

September 2019 - December 2019

ERASMUS Semester in machine learning, data science, computer vision and big data

IUT, UBFC, Dijon, France

2015 - 2017

Two year degree (DUT) in computer science

PUBLICATIONS

In reverse chronological order:

- OOPSLA 2023 (paper): Formally Verifying Optimizations with Block Simulations.
- TAP 2023 (paper): Testing a Formally Verified Compiler.
- ICOOOLPS 2023 (paper): Lazy Code Transformations in a Formally Verified Compiler.
- RISC-V Summit EU (abstract+poster): Formally Verified Advanced Optimizations for RISC-V.
- CPP 2022 (paper): Formally Verified Superblock Scheduling.
- Coq Workshop 2021 (abstract): Certifying assembly optimizations in Coq by symbolic execution with hash-consing.
- AFADL 2021 (short paper): Formally verified postpass scheduling with peephole optimization for AArch64.

Submitted (preprint): Formally Verifying Optimizations with Block Simulations.

RESEARCH

Verimag Post-doc

December 2023 - Present

Grenoble, France

- · Supervisors: Marie-Laure Potet and Sylvain Boulmé
- · Goal: integrating security countermeasures into the CompCert compiler.
- · Purpose: preventing fault injection attacks on programs.
- · We are interested in proving correctness, adequacy, and robustness properties of countermeasures.
- · This work is part of the Arsene French research project.

Verimag/TIMA

PhD Student

October 2020 - December 2023

Grenoble, France

- · Supervisors: Sylvain Boulmé and Frédéric Pétrot ¡¡¡¡¡¡ HEAD
- · Skills: Formal proof, Certified optimizations, Compilers, Coq, Ocaml, assembly

· Formalization and implementation of a translation validation framework by symbolic interpretation, proved correct in Coq. This tool defensively validates a class of transformations, and was integrated in the Chamois-CompCert fork.

EXPERIENCE

UGA 2021 - 2022

Teaching assistant

Grenoble, France

- · ALGO L3 S5 (UFR IM²AG) Tutorials (11 sessions), course about algorithmics and complexity
- · Databases project (ENSIMAG) Supervision of practical work (18 hours)
- · C project about building a graphical framework (ENSIMAG) Supervision of practical work (26 hours)

Asygn 2017 - 2020

 $Apprentice\ Engineer$

Grenoble, France

- · Supervisor: Christophe Leblanc
- · Skills: Algorithmics, Python, Verilog, Matlab, IT/Linux
- · Software engineering for embedded platforms: desktop and android RFID communication API.
- \cdot Research and development on RFID chips: real-time data analysis on-chip system.
- · IT manager throughout the period.

BU-CROOCS (Bangkok University Center of Research in Optoelectronics, Communications and Control Systems) Spring 2017

Second year internship

Bangkok, Thailand

- · Supervisor: Romuald Jolivot
- · Skills: Image processing, Algorithmics, Python, OpenCV
- · Small research project on a plant phenotyping system using image processing: an autonomous vision software for Raspberry Pi designed to study plant growth using multiple cameras.

SERVICE

I participated in:

- SICT 2023 and SICT 2022 Organizing Committee
- ESOP 2023 and ESOP 2022 Artifact Evaluation Committee

LANGUAGES

• French: mother tongue

• English: fluent