Formal Validation of Intra-Procedural Transformations by Defensive Symbolic Simulation

PhD Defense of Léo Gourdin - 12/12/2023
leo.gourdin@univ-grenoble-alpes.fr

Advisors:

Sylvain Boulmé (Verimag)
Frédéric Pétrot (TIMA)
Committee:
Delphine Demange - Examiner
Jean-Christophe Filliâtre - Rapporteur
Jens Knoop - Rapporteur
Marc Pouzet - Examiner
Gwen Salaün - Examiner

Contents

(1) Introduction
(2) Motivating Example
(3) Lazy Code Transformations

4 Symbolic Simulation
(5) Evaluation \& Conclusion

Motivations: compilation bugs

[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate \& optimize programs (source language \rightarrow target language).

Motivations: compilation bugs

[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate \& optimize programs (source language \rightarrow target language).

Optimizations: buggiest component (except for the C++ component) in both GCC and LLVM.

Motivations: compilation bugs

[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate \& optimize programs (source language \rightarrow target language).

Optimizations: buggiest component (except for the C++ component) in both GCC and LLVM.

Bugs may alter program semantics, and thus program behavior.
Avoiding bugs in safety-critical systems (planes, trains, elevators, ...) is essential.

Motivations: compilation bugs

[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate \& optimize programs (source language \rightarrow target language).

Optimizations: buggiest component (except for the C++ component) in both GCC and LLVM.

Bugs may alter program semantics, and thus program behavior.
Avoiding bugs in safety-critical systems (planes, trains, elevators, ...) is essential.

- $>50 \%$ optimizations bugs result in incorrect generated code
- Last 20 years: >8700 optimization bugs identified in GCC (vs. >1500 for LLVM)
- Bugs that crash compiler are easier to trace than optimization bugs

The CompCert compiler, verified in Coq

[Blazy et al. 2006; Leroy 2009]

CompCert (ACM Software System \& ACM Programming Languages Software Awards): is the $1^{\text {st }}$ formally verified C compiler

The CompCert compiler, verified in Coq

[Blazy et al. 2006; Leroy 2009]

CompCert (ACM Software System \& ACM Programming Languages Software Awards): is the $1^{\text {st }}$ formally verified C compiler

CoQ proof of semantics preservation

Formal correctness of COMPCERT:
For any source program S in C language, if S has no undefined behavior, and if the compiler returns some assembly program T, then any behavior of T is also a behavior of S.

The CompCert compiler, verified in Coq

[Blazy et al. 2006; Leroy 2009]

CompCert (ACM Software System \& ACM Programming Languages Software Awards): is the $1^{\text {st }}$ formally verified C compiler

CoQ proof of semantics preservation

Formal correctness of COMPCERT:
For any source program S in C language, if S has no undefined behavior, and if the compiler returns some assembly program T, then any behavior of T is also a behavior of S.

However... it is still less optimizing than "trusted" (non-proven) compilers (e.g. GCC)
Embedded/safe often means simple: compiler optimizations are then even more important.

Goal: correct \& efficient code for embedded cores

Predictability, security, or safety norms often require [França et al. 2012]:

- no dynamic reordering inside processors (instruction scheduling)
- no speculative execution (guessing conditions)
- simpler instruction sets, such as RISC-V

Goal: correct \& efficient code for embedded cores

Predictability, security, or safety norms often require [França et al. 2012]:

- no dynamic reordering inside processors (instruction scheduling)
- no speculative execution (guessing conditions)
- simpler instruction sets, such as RISC-V
\rightarrow efficiency is therefore the compiler's job

Goal: correct \& efficient code for embedded cores

Predictability, security, or safety norms often require [França et al. 2012]:

- no dynamic reordering inside processors (instruction scheduling)
- no speculative execution (guessing conditions)
- simpler instruction sets, such as RISC-V
\rightarrow efficiency is therefore the compiler's job
Many optimizations of GCC/LLVM are still missing:
Code Motion: moving instructions at better places, e.g. out of loops
Strength-reduction: replacing costly instructions (e.g. multiplications) by simpler ones (e.g. additions)

Software pipelining: optimization of loop bodies (e.g. by scheduling instructions above/below conditions)

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku... ...but checking a sudoku solution for correctness is much easier!

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku...
...but checking a sudoku solution for correctness is much easier!

We call this idea
Translation Validation
Used for Register Allocation [Rideau and Leroy 2010]

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku...
...but checking a sudoku solution for correctness is much easier!

We call this idea
Translation Validation
Used for Register Allocation
[Rideau and Leroy 2010]

Complex computations by efficient functions, called oracles, with an untrusted and hidden implementation for the formal proof.
\rightarrow only a dynamic defensive test of their result is formally verified

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku...
...but checking a sudoku solution for correctness is much easier!

We call this idea Defensive
Translation Validation
Used for Register Allocation [Rideau and Leroy 2010]

Complex computations by efficient functions, called oracles, with an untrusted and hidden implementation for the formal proof.
\rightarrow only a dynamic defensive test of their result is formally verified

A few details on CompCert's formalism

Program behavior \triangleq sequence of observable events
Undefined behavior \triangleq "errors" in the C semantics

Theorem of correctness by composing forward simulations between deterministic languages.

Each source step $S_{1} \rightarrow^{e} S_{1}^{\prime}$ is simulated by target steps without infinite successive stutterings; absence of step represents Undefined Behavior

Motivating RISC-V example (1/2)

```
double foo(double *a, long *v, long n) {
    long k = 7; long i = 0;
    double r = 2;
    if (a[0] < 2) return 2;
    for(; i < n; i += 4) {
        if (r >= a[1]) r -= a[0];
        else r *= 3;
        r += v[i] - k * i;
    }
    return r;
}
```


Motivating RISC-V example (1/2)

```
double foo(double *a, long *v, long n) {
    long k = 7; long i = 0;
    double r = 2;
    if (a[0] < 2) return 2;
    for(; i < n; i += 4) {
        if (r >= a[1]) r -= a[0];
        else r *= 3;
        r += v[i] - k * i;
    }
    return r;
}
```

CompCert optimizations are applied on register transfer language (RTL)

Motivating RISC-V example (1/2)

```
```

foo(a, v, n) {

```
```

foo(a, v, n) {
k = 7; i = 0; r = 2f
k = 7; i = 0; r = 2f
x17 = float64[a+0] // previous occurrence
x17 = float64[a+0] // previous occurrence
if (x17 <f r) { goto Exit }
if (x17 <f r) { goto Exit }
Loop:
Loop:
if (i >=ls n) { goto Exit }
if (i >=ls n) { goto Exit }
x16 = float64[a+8] // a[1] (unsafe)
x16 = float64[a+8] // a[1] (unsafe)
if (r >=f x16) {
if (r >=f x16) {
x14 = float64[a+0]; // safe to eliminate
x14 = float64[a+0]; // safe to eliminate
r = r -f x14 }
r = r -f x14 }
else { x15 = 3f; r = r *f x15 } // PRE
else { x15 = 3f; r = r *f x15 } // PRE
x13 = i <<l 3 // SR (addressing)
x13 = i <<l 3 // SR (addressing)
x12 = v +l x13 // SR (in sequence)
x12 = v +l x13 // SR (in sequence)
x10 = int64[x12+0]
x10 = int64[x12+0]
x11 = i *l k // SR
x11 = i *l k // SR
x9 = x10 -l x11
x9 = x10 -l x11
x8 = floatoflong(x9)
x8 = floatoflong(x9)
r = r +f x8
r = r +f x8
i = i +l 4
i = i +l 4
goto Loop
goto Loop
Exit: return r }

```
```

Exit: return r }

```
```

```
```

double foo(double *a, long *v, long n) {

```
```

double foo(double *a, long *v, long n) {
long k = 7; long i = 0;
long k = 7; long i = 0;
double r = 2;
double r = 2;
if (a[0] < 2) return 2;
if (a[0] < 2) return 2;
for(; i < n; i += 4) {
for(; i < n; i += 4) {
if (r >= a[1]) r -= a[0];
if (r >= a[1]) r -= a[0];
else r *= 3;
else r *= 3;
r += v[i] - k * i;
r += v[i] - k * i;
}
}
return r;
return r;
}

```
```

}

```
```

CompCert optimizations are applied on register transfer language (RTL)

Left frame: naive RISC-V (pseudo)code (mainline CompCert)!

Motivating RISC-V example (2/2)

```
foo(a, v, n) {
    k = 7; i = 0; r = 2f
    x17 = float64[a+0] // previous occurrence
    if (x17 <f r) { goto Exit }
Loop:
    if (i >=ls n) { goto Exit }
    x16 = float64[a+8] // a[1] (unsafe)
    if (r >=f x16) {
        x14 = float64[a+0]; // safe to eliminate
        r = r -f x14 }
    else { x15 = 3f; r = r *f x15 } // PRE
    x13 = i <<l 3 // SR (addressing)
    x12 = v +l x13 // SR (in sequence)
    x10 = int64[x12+0]
    x11 = i *l k // SR
    x9 = x10 -1 x11
    x8 = floatoflong(x9)
    r = r +f x8
    i = i +l 4
    goto Loop
Exit: return r }
```


Motivating RISC-V example (2/2)

```
foo(a, v, n) {
    k = 7; i = 0; r = 2f
    x17 = float64[a+0] // previous occurrence
    if (x17 <f r) { goto Exit }
Loop:
    if (i >=ls n) { goto Exit }
    x16 = float64[a+8] // a[1] (unsafe)
    if (r >=f x16) {
        x14 = float64[a+0]; // safe to eliminate
        r = r -f x14 }
    else { x15 = 3f; r = r *f x15 } // PRE
    x13 = i <<l 3 // SR (addressing)
    x12 = v +l x13 // SR (in sequence)
    x10 = int64[x12+0]
    x11 = i *l k // SR
    x9 = x10 -l x11
    x8 = floatoflong(x9)
    r = r +f x8
    i = i +l 4
    goto Loop
Exit: return r }
```

What is needed?

- partial loop invariant redundancy: load of constant 3

Motivating RISC-V example (2/2)

```
foo(a, v, n) {
    k = 7; i = 0; r = 2f
    x17 = float64[a+0] // previous occurrence
    if (x17 <f r) { goto Exit }
Loop:
    if (i >=ls n) { goto Exit }
    x16 = float64[a+8] // a[1] (unsafe)
    if (r >=f x16) {
        x14 = float64[a+0]; // safe to eliminate
        r = r -f x14 }
    else { x15 = 3f; r = r *f x15 } // PRE
    x13 = i <<l 3 // SR (addressing)
    x12 = v +l x13 // SR (in sequence)
    x10 = int64[x12+0]
    x11 = i *l k // SR
    x9 = x10 -l x11
    x8 = floatoflong(x9)
    r = r +f x8
    i = i +l 4
    goto Loop
Exit: return r }
```


What is needed?

- partial loop invariant redundancy: load of constant 3
- redundant load of
- a [0] (available before the loop)
- a [1] (only in the loop)

Motivating RISC-V example (2/2)

```
foo(a, v, n) {
    k = 7; i = 0; r = 2f
    x17 = float64[a+0] // previous occurrence
    if (x17 <f r) { goto Exit }
Loop:
    if (i >=ls n) { goto Exit }
    x16 = float64[a+8] // a[1] (unsafe)
    if (r >=f x16) {
        x14 = float64[a+0]; // safe to eliminate
        r = r -f x14 }
    else { x15 = 3f; r = r *f x15 } // PRE
    x13 = i <<l 3 // SR (addressing)
    x12 = v +l x13 // SR (in sequence)
    x10 = int64[x12+0]
    x11 = i *l k // SR
    x9 = x10 -l x11
    x8 = floatoflong(x9)
    r = r +f x8
    i = i +l 4
    goto Loop
Exit: return r }
```

What is needed?

- partial loop invariant redundancy: load of constant 3
- redundant load of
- a [0] (available before the loop)
- a [1] (only in the loop)
- Strength reduction of
- source multiplication $\mathrm{k} *$ i
- addressing calculation for v[i] \rightarrow was decomposed by instruction selection!

Motivating RISC-V example (2/2)

```
foo(a, v, n) {
    k = 7; i = 0; r = 2f
    x17 = float64[a+0] // previous occurrence
    if (x17 <f r) { goto Exit }
Loop:
    if (i >=ls n) { goto Exit }
    x16 = float64[a+8] // a[1] (unsafe)
    if (r >=f x16) {
        x14 = float64[a+0]; // safe to eliminate
        r = r -f x14 }
    else { x15 = 3f; r = r *f x15 } // PRE
    x13 = i <<l 3 // SR (addressing)
    x12 = v +l x13 // SR (in sequence)
    x10 = int64[x12+0]
    x11 = i *l k // SR
    x9 = x10 -l x11
    x8 = floatoflong(x9)
    r = r +f x8
    i = i +l 4
    goto Loop
Exit: return r }
```

What is needed?

- partial loop invariant redundancy: load of constant 3
- redundant load of
- a [0] (available before the loop)
- a [1] (only in the loop)
- Strength reduction of
- source multiplication $\mathrm{k} *$ i
- addressing calculation for v[i] \rightarrow was decomposed by instruction selection!
- + possibility to schedule some instructions in a better way (not explained in this presentation)

Overview of my contributions in Chamois CompCert

Black: original CompCert passes

Overview of my contributions in Chamois CompCert

- Block Transfer Language IR

[^0]
Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework


```
Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
```


Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework
- CM + SR: Lazy Code Transformations algorithm


```
Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only
```


Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework
- CM + SR: Lazy Code Transformations algorithm
- Control Flow Graph Morphism validator


```
Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only
```


Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework
- CM + SR: Lazy Code Transformations algorithm
- Control Flow Graph Morphism validator
- RISC-V expansion engine


```
Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only
```


Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework
- CM + SR: Lazy Code Transformations algorithm
- Control Flow Graph Morphism validator
- RISC-V expansion engine
- Port of the KVX postpass scheduler to AArch64 + Peephole optimizer

Optimizations

Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework
- CM + SR: Lazy Code Transformations algorithm
- Control Flow Graph Morphism validator
- RISC-V expansion engine
- Port of the KVX postpass scheduler to AArch64 + Peephole optimizer
- Experimental evaluation framework

Optimizations

Overview of my contributions in Chamois CompCert

- Block Transfer Language IR
- Intra-procedural, defensive Symbolic Execution framework
- CM + SR: Lazy Code Transformations algorithm
- Control Flow Graph Morphism validator
- RISC-V expansion engine
- Port of the KVX postpass scheduler to AArch64 + Peephole optimizer
- Experimental evaluation framework
- Extension of [Six et al. 2022]'s superblock prepass scheduling

Optimizations

[^1]
Lazy Code Motion (LCM) \& Lazy Strength Reduction (LSR)

[Knoop, Rüthing and Steffen 1992-1995]

Lazy Code Motion (LCM) \& Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

- Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

Lazy Code Motion (LCM) \& Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

- Intra-procedural, data-flow algorithms: aim at computational optimality with minimal impact on register pressure (liverange)
- LCM: moves operations and loads (all platforms)

Lazy Code Motion (LCM) \& Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

- Intra-procedural, data-flow algorithms: aim at computational optimality with minimal impact on register pressure (liverange)
- LCM: moves operations and loads (all platforms)
- LSR: reduces multiplications with a constant (RISC-V only)

Lazy Code Motion (LCM) \& Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

- Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)
- LCM: moves operations and loads (all platforms)
- LSR: reduces multiplications with a constant (RISC-V only)

Goals

- A "Lazy Code Transformations" (LCT) algorithm combining LCM \& LSR
- Producing hints to guide the symbolic execution validator

Lazy Code Motion (LCM) \& Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

- Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)
- LCM: moves operations and loads (all platforms)
- LSR: reduces multiplications with a constant (RISC-V only)

Goals

- A "Lazy Code Transformations" (LCT) algorithm combining LCM \& LSR
- Producing hints to guide the symbolic execution validator
- An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM \& LSR? Data-flow algorithms fit well with block structure and invariant inference

How the "Lazy Code Transformations" algorithm is applied

LCT is untrusted \rightarrow it was co-designed with defensive validation by Symbolic Execution:

How the "Lazy Code Transformations" algorithm is applied

LCT is untrusted \rightarrow it was co-designed with defensive validation by Symbolic Execution:

LCT step-by-step
(1) Joining (and critical) edges are split with synthetic (empty) nodes \rightarrow this is needed for data-flow fixed points + code motion opportunities in BTL

How the "Lazy Code Transformations" algorithm is applied

LCT is untrusted \rightarrow it was co-designed with defensive validation by Symbolic Execution:

LCT step-by-step
(1) Joining (and critical) edges are split with synthetic (empty) nodes
\rightarrow this is needed for data-flow fixed points + code motion opportunities in BTL
(2) Equation systems are solved (data-flow: 4 for code motion +3 for strength reduction; and a few non data-flow computations)

How the "Lazy Code Transformations" algorithm is applied

LCT is untrusted \rightarrow it was co-designed with defensive validation by Symbolic Execution:

LCT step-by-step
(1) Joining (and critical) edges are split with synthetic (empty) nodes
\rightarrow this is needed for data-flow fixed points + code motion opportunities in BTL
(2) Equation systems are solved (data-flow: 4 for code motion +3 for strength reduction; and a few non data-flow computations)
(3) Control Flow Graph is rewritten

How the "Lazy Code Transformations" algorithm is applied

LCT is untrusted \rightarrow it was co-designed with defensive validation by Symbolic Execution:

LCT step-by-step
(1) Joining (and critical) edges are split with synthetic (empty) nodes
\rightarrow this is needed for data-flow fixed points + code motion opportunities in BTL
(2) Equation systems are solved (data-flow: 4 for code motion +3 for strength reduction; and a few non data-flow computations)
(3) Control Flow Graph is rewritten
(4) Invariant are inferred from equation results

On our example: partitioning, synthetic nodes, and candidates

```
double foo(double *a, long *v, long n) {
    long k = 7; long i = 0;
    double r = 2;
    if (a[0] < 2) return 2;
    for(; i < n; i += 4) {
        if (r >= a[1]) r -= a[0];
        else r *= 3;
        r += v[i] - k * i;
    }
    return r;
}
```


On our example: partitioning, synthetic nodes, and candidates

Legend:

Numbering (post-order)

Synthetic nodes

```
double foo(double *a, long *v, long n) {
```

double foo(double *a, long *v, long n) {
long k = 7; long i = 0;
long k = 7; long i = 0;
double r = 2;
double r = 2;
if (a[0] < 2) return 2;
if (a[0] < 2) return 2;
for(; i < n; i += 4) {
for(; i < n; i += 4) {
if (r >= a[1]) r -= a[0];
if (r >= a[1]) r -= a[0];
else r *= 3;
else r *= 3;
r += v[i] - k * i;
r += v[i] - k * i;
}
}
return r;
return r;
}

```
}
```


On our example: partitioning, synthetic nodes, and candidates

Legend:

Numbering (post-order)

Synthetic nodes
Candidates:

- Code Motion
- Strength Reduction $\left.{ }_{11}^{10}\right|_{\}}$

```
double foo(double *a, long *v, long n) {
    long k = 7; long i = 0;
    double r = 2;
    if (a[0] < 2) return 2;
    for(; i < n; i += 4) {
        if (r >= a[1]) r -= a[0];
        else r *= 3;
        r += v[i] - k * i;
    }
    return r;
}
```


On our example: partitioning, synthetic nodes, and candidates

Legend:

Numbering (post-order)
Synthetic nodes
Candidates:

- Code Motion
- Strength Reduction ${ }_{11}^{10}$

```
double foo(double *a, long *v, long n) {
    long k = 7; long i = 0;
    double r = 2;
    if (a[0] < 2) return 2;
    for(; i < n; i += 4) {
        if (r >= a[1]) r -= a[0];
        else r *= 3;
        r += v[i] - k * i;
    }
    return r;
}
```


Desirable adjustments

- Restriction: our validator cannot anticipate potentially trapping instructions (e.g. load a [1])

On our example: partitioning, synthetic nodes, and candidates

Legend:

Numbering (post-order)

Synthetic nodes
Candidates:

- Code Motion
- Strength Reduction ${ }_{11}^{10}$

```
double foo(double *a, long *v, long n) {
    long k = 7; long i = 0;
    double r = 2;
    if (a[0] < 2) return 2;
    for(; i < n; i += 4) {
        if (r >= a[1]) r -= a[0];
        else r *= 3;
        r += v[i] - k * i;
    }
    return r;
}
```


Desirable adjustments

- Restriction: our validator cannot anticipate potentially trapping instructions (e.g. load a [1])
- Extension: the original algorithms would be unable to reduce nested sequences

Optimizing candidates (1/2)

Optimizing candidates (1/2)

Candidates treated topologically
$1^{\text {st }}$ candidate: the load of a [0]
Restriction for potentially trapping instruction
As loads may trap, LCT ensures two important conditions:
(1) a previous occurrence exists
(2) the previous occurrence is available on every path leading to the target redundancy

Optimizing candidates (1/2)

Candidates treated topologically
$1^{\text {st }}$ candidate: the load of a [0]

Restriction for potentially trapping instruction

As loads may trap, LCT ensures two important conditions:
(1) a previous occurrence exists
(2) the previous occurrence is available on every path leading to the target redundancy

Extension for nested sequences

(1) Introduction of fresh pseudoregister

2 Local substitution of pseudoregisters
(3) Insertion of a move at block exits
this move is then removed by dead code elimination if useless

Optimizing candidates (2/2)

leo.gourdin@univ-grenoble-alpes.fr

Optimizing candidates (2/2)

- Redundant load of a [0] eliminated

Optimizing candidates (2/2)

- Redundant load of a [0] eliminated
- Load of immediate constant $3 f$ anticipated

Optimizing candidates (2/2)

- Redundant load of a [0] eliminated
- Load of immediate constant $3 f$ anticipated
- Array addressing sequence for v[i] reduced with compensation
$i \ll 3=4 \times 8=32$
- Multiplication i * k reduced with compensation $i \times k=4 \times 7=28$

Optimizing candidates (2/2)

[^2]
Quick summary on Lazy Code Transformations

- For potentially trapping instructions (e.g. loads + arch specific operations); we adapted Lazy Code Motion to restrict it with stronger conditions
- To support instruction sequences; we proposed a rewriting procedure by substitution of fresh variables

Quick summary on Lazy Code Transformations

- For potentially trapping instructions (e.g. loads + arch specific operations); we adapted Lazy Code Motion to restrict it with stronger conditions
- To support instruction sequences; we proposed a rewriting procedure by substitution of fresh variables
- To generalize Lazy Strength Reduction on basic blocks; we had to adapt data-flow equations of [Knoop et al. 1993]

Quick summary on Lazy Code Transformations

- For potentially trapping instructions (e.g. loads + arch specific operations); we adapted Lazy Code Motion to restrict it with stronger conditions
- To support instruction sequences; we proposed a rewriting procedure by substitution of fresh variables
- To generalize Lazy Strength Reduction on basic blocks; we had to adapt data-flow equations of [Knoop et al. 1993]
- Lastly, LCT features an invariant inference procedure reusing existing analyses

Quick summary on Lazy Code Transformations

- For potentially trapping instructions (e.g. loads + arch specific operations); we adapted Lazy Code Motion to restrict it with stronger conditions
- To support instruction sequences; we proposed a rewriting procedure by substitution of fresh variables
- To generalize Lazy Strength Reduction on basic blocks; we had to adapt data-flow equations of [Knoop et al. 1993]
- Lastly, LCT features an invariant inference procedure reusing existing analyses
- Now, two questions arise:
(1) How to defensively validate LCT by Symbolic Execution + Invariants?
(2) How can we eliminate non-available loads like a [1] in the example?

Block Transfer Language \& Blockstep semantics

Partitioning the code into loop-free blocks (with a single entry point from the outside):

- Avoids loops in symbolic execution
- Allows for block scoped optimizations (e.g. instruction scheduling)
- Stays compatible with (basic) block based algorithms

Block Transfer Language \& Blockstep semantics

Partitioning the code into loop-free blocks (with a single entry point from the outside):

- Avoids loops in symbolic execution
- Allows for block scoped optimizations (e.g. instruction scheduling)
- Stays compatible with (basic) block based algorithms

Block Transfer Language: Control flow graph of syntactically defined blocks

Block Transfer Language \& Blockstep semantics

Partitioning the code into loop-free blocks (with a single entry point from the outside):

- Avoids loops in symbolic execution
- Allows for block scoped optimizations (e.g. instruction scheduling)
- Stays compatible with (basic) block based algorithms

Block Transfer Language: Control flow graph of syntactically defined blocks

Blockstep \triangleq execution from the entry point to one exit point (at most one non-silent event)
To relate the BTL blockstep semantics with the RTL smallstep semantics, we want "local" blockstep simulations to ensure a "global" simulation!

It suffices that blockstep semantics bisimulates the standard smallstep semantics.

Principle of symbolic execution

[King 1976; Samet 1976]

Control flow graph of blocks:

Principle of symbolic execution

[King 1976; Samet 1976]

Control flow graph of blocks:

For each pair of block $\left(B_{\mathcal{S}}, B_{\mathcal{T}}\right)$ in $\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right), \ldots\right]$, compare symbolic states $\left(\delta_{\mathcal{S}}, \delta_{\mathcal{T}}\right)$
from their symbolic execution with ξ : block $\rightarrow \delta$.
With $\xi\left(B_{\mathcal{S}}\right)=\delta_{\mathcal{S}}$ and $\xi\left(B_{\mathcal{T}}\right)=\delta_{\mathcal{T}}$, does $\delta_{\mathcal{S}} \equiv \delta_{\mathcal{T}}$ hold?

Principle of symbolic execution

[King 1976; Samet 1976]

Control flow graph of blocks:

For each pair of block $\left(B_{\mathcal{S}}, B_{\mathcal{T}}\right)$ in $\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right), \ldots\right]$, compare symbolic states $\left(\delta_{\mathcal{S}}, \delta_{\mathcal{T}}\right)$
from their symbolic execution with ξ : block $\rightarrow \delta$.
With $\xi\left(B_{\mathcal{S}}\right)=\delta_{\mathcal{S}}$ and $\xi\left(B_{\mathcal{T}}\right)=\delta_{\mathcal{T}}$,
does $\delta_{\mathcal{S}} \equiv \delta_{\mathcal{T}}$ hold?

In CompCert: Formally verified superblock scheduling [Six et al. 2022]

Validated by Symbolic Execution (SE), but limited to superblock scope;
\rightarrow no support for intra-procedural transformations

Principle of symbolic execution

[King 1976; Samet 1976]

Control flow graph of blocks:

For each pair of block $\left(B_{\mathcal{S}}, B_{\mathcal{T}}\right)$ in $\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right), \ldots\right]$, compare symbolic states $\left(\delta_{\mathcal{S}}, \delta_{\mathcal{T}}\right)$
from their symbolic execution with ξ : block $\rightarrow \delta$.
With $\xi\left(B_{\mathcal{S}}\right)=\delta_{\mathcal{S}}$ and $\xi\left(B_{\mathcal{T}}\right)=\delta_{\mathcal{T}}$,
does $\delta_{\mathcal{S}} \equiv \delta_{\mathcal{T}}$ hold?

In CompCert: Formally verified superblock scheduling [Six et al. 2022]

Validated by Symbolic Execution (SE), but limited to superblock scope;
\rightarrow no support for intra-procedural transformations
Advantages: generic validation method + scales well + supports normalized rewrites

Intra-Block simulation: basic block example

Assume a proven rewriting rule $\forall x, x \times 2=x+x$.

Intra-Block simulation: basic block example

Assume a proven rewriting rule $\forall x, x \times 2=x+x$.

$$
\text { (B1) } \begin{aligned}
r_{3} & :=r_{1}+r_{2} ; \\
r_{3} & :=r_{3} \times 2 ; \\
r_{4} & :=\operatorname{load}\left[m, r_{3}\right] ; \\
r_{4} & :=r_{2} \times r_{2} ;
\end{aligned}
$$

$$
\text { (B2) } \begin{aligned}
r_{4} & :=r_{2} \times r_{2} ; \\
r_{3} & :=r_{1}+r_{2} ; \\
r_{3} & :=r_{3}+r_{3} ;
\end{aligned}
$$

Intra-Block simulation: basic block example

Assume a proven rewriting rule $\forall x, x \times 2=x+x$.

$$
r_{4}:=r_{2} \times r_{2}
$$

Both B_{1} and B_{2} lead to the same parallel assignment (of live registers):

$$
r_{3}:=\left(r_{1}+r_{2}\right)+\left(r_{1}+r_{2}\right) \| r_{4}:=r_{2} \times r_{2}
$$

$$
\begin{aligned}
& \left(B_{1}\right) \quad r_{3}:=r_{1}+r_{2} ; \\
& r_{3}:=r_{3} \times 2 ; \\
& r_{4}:=\text { load }\left[m, r_{3}\right] \text {; } \\
& \text { (} B_{2} \text {) } r_{4}:=r_{2} \times r_{2} \text {; } \\
& r_{3}:=r_{1}+r_{2} ; \\
& r_{3}:=r_{3}+r_{3} ;
\end{aligned}
$$

Intra-Block simulation: basic block example

Assume a proven rewriting rule $\forall x, x \times 2=x+x$.

$$
\begin{aligned}
\left(B_{1}\right) r_{3} & :=r_{1}+r_{2} ; \\
r_{3} & :=r_{3} \times 2 ; \\
r_{4} & :=\operatorname{load}\left[m, r_{3}\right] ; \\
r_{4} & :=r_{2} \times r_{2} ;
\end{aligned}
$$

$$
\text { (B2) } \begin{aligned}
r_{4} & :=r_{2} \times r_{2} ; \\
r_{3} & :=r_{1}+r_{2} ; \\
r_{3} & :=r_{3}+r_{3} ;
\end{aligned}
$$

Both B_{1} and B_{2} lead to the same parallel assignment (of live registers):

$$
r_{3}:=\left(r_{1}+r_{2}\right)+\left(r_{1}+r_{2}\right) \| r_{4}:=r_{2} \times r_{2}
$$

B_{2} simulates B_{1}, but B_{1} simulates B_{2} iff "OK (load $\left.\left[m, r_{3}\right]\right)$ "
$\rightarrow B_{1} \sim B_{2}$ precondition is stronger as we must not add any potential trap

Intra-Block simulation: basic block example

Assume a proven rewriting rule $\forall x, x \times 2=x+x$.

$$
\begin{aligned}
\left(B_{1}\right) r_{3} & :=r_{1}+r_{2} ; \\
r_{3} & :=r_{3} \times 2 ; \\
r_{4} & :=1 \operatorname{load}\left[m, r_{3}\right] ; \\
r_{4} & :=r_{2} \times r_{2} ;
\end{aligned}
$$

$$
\text { (B2) } \begin{aligned}
r_{4} & :=r_{2} \times r_{2} ; \\
r_{3} & :=r_{1}+r_{2} ; \\
r_{3} & :=r_{3}+r_{3} ;
\end{aligned}
$$

Both B_{1} and B_{2} lead to the same parallel assignment (of live registers):

$$
r_{3}:=\left(r_{1}+r_{2}\right)+\left(r_{1}+r_{2}\right) \| r_{4}:=r_{2} \times r_{2}
$$

B_{2} simulates B_{1}, but B_{1} simulates B_{2} iff "OK (load $\left.\left[m, r_{3}\right]\right)$ "
$\rightarrow B_{1} \sim B_{2}$ precondition is stronger as we must not add any potential trap
However... term duplication makes structural comparison exponential (e.g. " $r_{1}+r_{2}$ ")! Solution of [Six et al. 2020]: hash-consing, i.e. memoize subterms + pointer equalities

Aggregated block-by-block simulations, in practice

Symbolic states: $\delta \triangleq(\mu, \vec{\sigma}, \mathcal{R})$ (memory, precondition, registers state)

Aggregated block-by-block simulations, in practice

Symbolic states: $\delta \triangleq(\mu, \vec{\sigma}, \mathcal{R})$ (memory, precondition, registers state)
Memory $\quad \mu::=$ Sinit $\mid \operatorname{Sstore}\left(\mu_{\text {old }}\right.$, chk, addr, $\left.\vec{\sigma}, s r c\right)$

Aggregated block-by-block simulations, in practice

Symbolic states: $\delta \triangleq(\mu, \vec{\sigma}, \mathcal{R})$ (memory, precondition, registers state)
Memory $\quad \mu::=$ Sinit $\mid \operatorname{Sstore}\left(\mu_{\text {old }}\right.$, chk, addr, $\left.\vec{\sigma}, s r c\right)$
Values $\quad \sigma::=\operatorname{Sinput}(r)|\operatorname{Sop}(o p, \vec{\sigma})| \operatorname{Sload}(\mu, \operatorname{trap}, \operatorname{chk}, a d d r, \vec{\sigma}) \mid \ldots$

Aggregated block-by-block simulations, in practice

Symbolic states: $\delta \triangleq(\mu, \vec{\sigma}, \mathcal{R})$ (memory, precondition, registers state)
Memory $\quad \mu::=$ Sinit $\mid \operatorname{Sstore}\left(\mu_{\text {old }}\right.$, chk, addr, $\left.\vec{\sigma}, \operatorname{src}\right)$
Values
$\sigma::=\operatorname{Sinput}(r)|\operatorname{Sop}(o p, \vec{\sigma})| \operatorname{Sload}(\mu$, trap, chk, addr, $\vec{\sigma}) \mid \ldots$
Regset $\mathcal{R} \triangleq r \mapsto \sigma$ a finite map "register \mapsto terms" (parallel assignment)

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic) blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: $\delta \triangleq(\mu, \vec{\sigma}, \mathcal{R})$ (memory, precondition, registers state)
Memory $\quad \mu::=$ Sinit $\mid \operatorname{Sstore}\left(\mu_{\text {old }}\right.$, chk, addr, $\left.\vec{\sigma}, s r c\right)$
Values $\sigma::=\operatorname{Sinput}(r)|\operatorname{Sop}(o p, \vec{\sigma})| \operatorname{Sload}(\mu$, trap, chk, addr, $\vec{\sigma}) \mid \ldots$
Regset $\mathcal{R} \triangleq r \mapsto \sigma$ a finite map "register \mapsto terms" (parallel assignment)

According to the block shape, the resulting state is:

- a single triplet for basic-blocks;

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic) blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: $\delta \triangleq(\mu, \vec{\sigma}, \mathcal{R})$ (memory, precondition, registers state)
Memory $\quad \mu::=$ Sinit $\mid \operatorname{Sstore}\left(\mu_{\text {old }}\right.$, chk, addr, $\left.\vec{\sigma}, s r c\right)$
Values $\quad \sigma::=\operatorname{Sinput}(r)|\operatorname{Sop}(o p, \vec{\sigma})| \operatorname{Sload}(\mu, \operatorname{trap}, \operatorname{chk}$, addr, $\vec{\sigma}) \mid \ldots$
Regset $\mathcal{R} \triangleq r \mapsto \sigma$ a finite map "register \mapsto terms" (parallel assignment)

According to the block shape, the resulting state is:

- a single triplet for basic-blocks;
- a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

The "basic" simulation test

Independently, for each pair of blocks,
Comparing symbolic states

The "basic" simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let $\delta_{1}=\left(\mu_{1}, \overrightarrow{\sigma_{1}}, \mathcal{R}_{1}\right)$ and $\delta_{2}=\left(\mu_{2}, \overrightarrow{\sigma_{2}}, \mathcal{R}_{2}\right), \delta_{2}$ simulates δ_{1} iff:

$$
\delta_{1} \succeq \delta_{2} \triangleq \mu_{1}=\mu_{2} \wedge \overrightarrow{\sigma_{2}} \subseteq \overrightarrow{\sigma_{1}} \wedge \mathcal{R}_{1} \subseteq \mathcal{R}_{2}
$$

The "basic" simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let $\delta_{1}=\left(\mu_{1}, \overrightarrow{\sigma_{1}}, \mathcal{R}_{1}\right)$ and $\delta_{2}=\left(\mu_{2}, \overrightarrow{\sigma_{2}}, \mathcal{R}_{2}\right), \delta_{2}$ simulates δ_{1} iff:

$$
\delta_{1} \succeq \delta_{2} \triangleq \mu_{1}=\mu_{2} \wedge \overrightarrow{\sigma_{2}} \subseteq \overrightarrow{\sigma_{1}} \wedge \mathcal{R}_{1} \subseteq \mathcal{R}_{2}
$$

$\rightarrow \delta_{1}$ is at least as trapping as δ_{2} (we do not add any potential trap)

The "basic" simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let $\delta_{1}=\left(\mu_{1}, \overrightarrow{\sigma_{1}}, \mathcal{R}_{1}\right)$ and $\delta_{2}=\left(\mu_{2}, \overrightarrow{\sigma_{2}}, \mathcal{R}_{2}\right), \delta_{2}$ simulates δ_{1} iff:

$$
\delta_{1} \succeq \delta_{2} \triangleq \mu_{1}=\mu_{2} \wedge \overrightarrow{\sigma_{2}} \subseteq \overrightarrow{\sigma_{1}} \wedge \mathcal{R}_{1} \subseteq \mathcal{R}_{2}
$$

$\rightarrow \delta_{1}$ is at least as trapping as δ_{2} (we do not add any potential trap)
$\rightarrow \delta_{2}$ may define fresh variables

The "basic" simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let $\delta_{1}=\left(\mu_{1}, \overrightarrow{\sigma_{1}}, \mathcal{R}_{1}\right)$ and $\delta_{2}=\left(\mu_{2}, \overrightarrow{\sigma_{2}}, \mathcal{R}_{2}\right), \delta_{2}$ simulates δ_{1} iff:

$$
\delta_{1} \succeq \delta_{2} \triangleq \mu_{1}=\mu_{2} \wedge \overrightarrow{\sigma_{2}} \subseteq \overrightarrow{\sigma_{1}} \wedge \mathcal{R}_{1} \subseteq \mathcal{R}_{2}
$$

$\rightarrow \delta_{1}$ is at least as trapping as δ_{2} (we do not add any potential trap)
$\rightarrow \delta_{2}$ may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)

The "basic" simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let $\delta_{1}=\left(\mu_{1}, \overrightarrow{\sigma_{1}}, \mathcal{R}_{1}\right)$ and $\delta_{2}=\left(\mu_{2}, \overrightarrow{\sigma_{2}}, \mathcal{R}_{2}\right), \delta_{2}$ simulates δ_{1} iff:

$$
\delta_{1} \succeq \delta_{2} \triangleq \mu_{1}=\mu_{2} \wedge \overrightarrow{\sigma_{2}} \subseteq \overrightarrow{\sigma_{1}} \wedge \mathcal{R}_{1} \subseteq \mathcal{R}_{2}
$$

$\rightarrow \delta_{1}$ is at least as trapping as δ_{2} (we do not add any potential trap)
$\rightarrow \delta_{2}$ may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads) \rightarrow solution: a prior loop-peeling pass.

The "basic" simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let $\delta_{1}=\left(\mu_{1}, \overrightarrow{\sigma_{1}}, \mathcal{R}_{1}\right)$ and $\delta_{2}=\left(\mu_{2}, \overrightarrow{\sigma_{2}}, \mathcal{R}_{2}\right), \delta_{2}$ simulates δ_{1} iff:

$$
\delta_{1} \succeq \delta_{2} \triangleq \mu_{1}=\mu_{2} \wedge \overrightarrow{\sigma_{2}} \subseteq \overrightarrow{\sigma_{1}} \wedge \mathcal{R}_{1} \subseteq \mathcal{R}_{2}
$$

$\rightarrow \delta_{1}$ is at least as trapping as δ_{2} (we do not add any potential trap)
$\rightarrow \delta_{2}$ may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads) \rightarrow solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

Generalizing this principle for inter-block transformations (1/2)

Idea:

(1) Oracles infer and add invariant annotations to the target program
(2) Symbolic simulation defensively validate invariants
\rightarrow information propagation + consistency at global level

Generalizing this principle for inter-block transformations (1/2)

Idea:

(1) Oracles infer and add invariant annotations to the target program
(2) Symbolic simulation defensively validate invariants
\rightarrow information propagation + consistency at global level

High-level overview

Each block is annotated with two types of invariants:
(1) Gluing invariant (G): assigns target variables by expressions of source variables

2 History invariant (\mathcal{H}) : assigns source variables by expressions of source variables

Generalizing this principle for inter-block transformations (1/2)

Idea:

(1) Oracles infer and add invariant annotations to the target program
(2) Symbolic simulation defensively validate invariants
\rightarrow information propagation + consistency at global level

High-level overview

Each block is annotated with two types of invariants:
(1) Gluing invariant (G): assigns target variables by expressions of source variables

2 History invariant (\mathcal{H}) : assigns source variables by expressions of source variables Each invariant is composed of:

- A sequence of assignments
- A set of live variables in the block (i.e. as trivial assignments " $\mathrm{x}:=\mathrm{x}$ ")

Generalizing this principle for inter-block transformations (2/2)

- $\epsilon \triangleq$ empty symbolic state

In [Six et al. 2022],
no relation between local
simulations:
no anticipation possible!

Generalizing this principle for inter-block transformations (2/2)

- $\epsilon \triangleq$ empty symbolic state
- $V_{\mathcal{S}}, V_{\mathcal{T}}$: sets of source/target variables; $\sigma[V]$: symbolic expressions of variables of V
- I, J subscripts: invariant of the current/successors blocks

In [Six et al. 2022],
no relation between local simulations:
no anticipation possible!


```
Anticipation of
(non-trapping) computations:
Gluing Invariants
(\mathcal{G}:\mp@subsup{V}{\mathcal{T}}{}\mapsto\sigma[\mp@subsup{V}{\mathcal{S}}{}]).
```


Generalizing this principle for inter-block transformations (2/2)

- $\epsilon \triangleq$ empty symbolic state
- $V_{\mathcal{S}}, V_{\mathcal{T}}$: sets of source/target variables; $\sigma[V]$: symbolic expressions of variables of V
- I, J subscripts: invariant of the current/successors blocks

In [Six et al. 2022],
no relation between local simulations:
no anticipation possible!


```
Anticipation of
(non-trapping) computations:
Gluing Invariants
(\mathcal{G:}}\mp@subsup{V}{\mathcal{T}}{}\mapsto\sigma[\mp@subsup{V}{\mathcal{S}}{\prime}])
```


Sharing a common execution past: History Invariants ($\mathcal{H}: V_{\mathcal{S}} \mapsto \sigma\left[V_{\mathcal{S}}\right]$).

$$
{ }_{\delta_{s 1}^{\prime} \succeq \delta_{s 1}^{\prime}}^{\mathcal{H}_{\mathcal{L}}}{ }^{\mathrm{U}}
$$

Still using the " \succeq " comparison on the target's output liveness (e.g. " $\succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}$ ")

Validating Lazy Code Transformations on our example (1/3)

leo.gourdin@univ-grenoble-alpes.fr

Validating Lazy Code Transformations on our example (1/3)

Entry with live variables only (block 8):
\mathcal{G} : [ALIVE=\{a, v, n\}]

Validating Lazy Code Transformations on our example (1/3)

Entry with live variables only (block 8):
\mathcal{G} : [ALIVE=\{a, v, n\}]
Old synthetic node (block 7):

```
G: [ALIVE={a, v, n, k, i, r};
        x18:=float64[a+0]]
\mathcal{H}: [k:=7]
```


Validating Lazy Code Transformations on our example (1/3)

Entry with live variables only (block 8):
\mathcal{G} : [ALIVE=\{a, v, n\}]
Old synthetic node (block 7):

$$
\begin{array}{ll}
\mathcal{G}: & {[\text { ALIVE }=\{\mathrm{a}, \mathrm{v}, \mathrm{n}, \mathrm{k}, \mathrm{i}, \mathrm{r}\} ;} \\
& \text { x18:=float } 64[\mathrm{a}+0]] \\
\mathcal{H}: & {[\mathrm{k}:=7]}
\end{array}
$$

For all loop blocks (in $\{2,3,4,5,6\}$):

$\mathcal{G}:$	[ALIVE= $\{\mathrm{a}, \mathrm{n}, \mathrm{i}, \mathrm{r}\}$;
	x18:=float64[a+0]; x19:=3f;
	AUX/x20:=i <<l 3;
	$\mathrm{x} 21:=\mathrm{v}$ +1 x20; x22:=i *l k]
$\mathcal{H}:$	[k:=7]

Validating Lazy Code Transformations on our example (1/3)

Entry with live variables only (block 8):
\mathcal{G} : [ALIVE=\{a, v, n\}]
Old synthetic node (block 7):

$$
\begin{array}{ll}
\mathcal{G}: & {[\text { ALIVE }=\{\mathrm{a}, \mathrm{v}, \mathrm{n}, \mathrm{k}, \mathrm{i}, \mathrm{r}\} ;} \\
& \text { x18:=float } 64[\mathrm{a}+0]] \\
\mathcal{H}: & {[\mathrm{k}:=7]}
\end{array}
$$

For all loop blocks (in $\{2,3,4,5,6\}$):

```
G: [ALIVE={a, n, i, r};
        x18:=float64[a+0]; x19:=3f;
        AUX/x20:=i <<l 3;
        x21:=v +l x20; x22:=i *l k]
H: [k:=7]
Exit (block 1):
```

$\mathcal{G}: \quad$ [ALIVE $=\{r\}]$

Validating Lazy Code Transformations on our example (2/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 1: synthetic node 7 (anticipate reduced operations)

Validating Lazy Code Transformations on our example (2/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{J}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 1: synthetic node 7 (anticipate reduced operations)

Validating Lazy Code Transformations on our example (2/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{J}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 1: synthetic node 7 (anticipate reduced operations)

(1) $\mu_{1}=\mu_{2}=$ Sinit
(2) $\overrightarrow{\sigma_{2}}=\overrightarrow{\sigma_{1}}=$ float $64[a+0]$

Validating Lazy Code Transformations on our example (2/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{J}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 1: synthetic node 7 (anticipate reduced operations)

(1) $\mu_{1}=\mu_{2}=$ Sinit
(2) $\overrightarrow{\sigma_{2}}=\overrightarrow{\sigma_{1}}=$ float $64[a+0]$
(3) $\mathcal{R}_{1}=\mathcal{R}_{2}=a:=a\|n:=n\| i:=i\|r:=r\|$
$\Longrightarrow \delta_{1} \succeq \delta_{2}$

$$
x_{18}:=\text { float } 64[a+0]\left\|x_{19}:=3 \mathrm{f}\right\| x_{21}:=8 \cdot i+v \| x_{22}:=7 \cdot i
$$

Validating Lazy Code Transformations on our example (3/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 2: loop block 2 (remember reduced operations)

Validating Lazy Code Transformations on our example (3/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 2: loop block 2 (remember reduced operations)

Validating Lazy Code Transformations on our example (3/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 2: loop block 2 (remember reduced operations)

(1) $\mu_{1}=\mu_{2}=\operatorname{Sinit} \quad(2) \overrightarrow{\sigma_{2}}=\overrightarrow{\sigma_{1}}=$ float $64[a+0] ; \operatorname{int} 64[8 \cdot i+v]$

Validating Lazy Code Transformations on our example (3/3)

$\mathcal{G}_{I}=$ input $/ \mathcal{G}_{J}=$ output, we have:
(1) apply \mathcal{H} (same for input/output here);
(2) compare with $\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)$

Example 2: loop block 2 (remember reduced operations)

```
                                    \mathcal{H}}:\quad[k:=7
    \mathcal{G}}:\quad[ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f
    AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]
```

```
x13 = i <<l 3
```

x13 = i <<l 3
x12 = v +l x13
x12 = v +l x13
x10 = int64[x12+0]
x10 = int64[x12+0]
x11 = i *l k
x11 = i *l k
x10 = int64[x21+0]
x10 = int64[x21+
x8 = floatoflong(x9)
x9 = x10 -1 x1
x9 = x10 -1 x1
x8 = floatoflong(x9)
x8 = floatoflong(x9)
r = r +f x8
r = r +f x8
r = r +f x8
x21 = x21 +1 32
x22 = x22 +1 28
i = i +l 4
i = i +l 4
i = i +l 4

```
(1) \(\mu_{1}=\mu_{2}=\) Sinit (2) \(\overrightarrow{\sigma_{2}}=\overrightarrow{\sigma_{1}}=\) float \(64[a+0] ;\) int64[8.i+v]
(3) \(\mathcal{R}_{1}=\mathcal{R}_{2}=a:=a\|n:=n\| i=i+4 \| x_{18}:=\) float64[a+0] \(\left\|x_{19}:=3 \mathrm{f}\right\|\) \(\Longrightarrow \delta_{1} \succeq \delta_{2}\) \(x_{21}:=8 \cdot i+v+32\left\|x_{22}:=7 \cdot i+28\right\| r:=r+\) fofl (int64[8•i+v]-7•i)

\section*{Validating Lazy Code Transformations on our example (3/3)}
\(\mathcal{G}_{I}=\) input \(/ \mathcal{G}_{J}=\) output, we have:
(1) apply \(\mathcal{H}\) (same for input/output here);
(2) compare with \(\left(\mathcal{S} \triangleright \mathcal{G}_{J}\right) \succeq_{\operatorname{dom}\left(\mathcal{G}_{\jmath}\right)}\left(\mathcal{G}_{I} \triangleright \mathcal{T}\right)\)

Example 2: loop block 2 (remember reduced operations)
```

 \mathcal{H}}:\quad[k:=7
 \mathcal{G}}:\mp@code{[ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f;
 AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]
    ```

```

x10 = int64[x21+0]
x9 = x10 -1 x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +1 32
x22 = x22 +1 28
i = i +l 4

```

Some symbolic values were rewritten to a normal form, e.g.
\[
x_{21}:=8 \cdot i+v+32 \| x_{22}:=7 \cdot i+28
\]
\[
\Longrightarrow \delta_{1} \succeq \delta_{2}
\]
...using a restricted affine theory.

\section*{A step back: summary on Block Transfer Language \& CFG morphisms}

\(\dagger=m y\) contributions

\section*{A step back: summary on Block Transfer Language \& CFG morphisms}


\section*{Other contribution: a control flow graph morphism validator}

Parametrized according to the type of morphism, used to validate:

\section*{A step back: summary on Block Transfer Language \& CFG morphisms}


\section*{Other contribution: a control flow graph morphism validator}

Parametrized according to the type of morphism, used to validate:
- the \(\mathrm{RTL} \leftrightarrow \mathrm{BTL}\) translation

\section*{A step back: summary on Block Transfer Language \& CFG morphisms}


\section*{Other contribution: a control flow graph morphism validator}

Parametrized according to the type of morphism, used to validate:
- the \(\mathrm{RTL} \leftrightarrow \mathrm{BTL}\) translation
- code duplication (loop unrollings) \& factorization (DFA minimization)
- the insertion of synthetic nodes for data-flow analyses

\section*{Experimental evaluation}

Compile times that scale
(thanks to formally verified hash-consing)


\section*{Benchmarks: LLVMtests, MiBench, PolyBench, TACLeBench, Verimag}

\section*{Experimental evaluation}

Compile times that scale (thanks to formally verified hash-consing)


Benchmarks: LLVMtests, MiBench, PolyBench, TACLeBench, Verimag

Closing the gap with"GCC -01"
Comparing w.r.t. Official CompCert over five test suites


Measured on a RISC-V U74 Core (SiFive HiFive Unmatched board) Median gain w.r.t. Official CompCert with relative standard deviation \(\leq 2 \%\)

\section*{Conclusion}

\section*{Insights}

Formally verified defensive programming helps in validating advanced compiler optimizations:

\section*{Conclusion}

\section*{Insights}

Formally verified defensive programming helps in validating advanced compiler optimizations:
- A formally verified interpreter only does simple computations;
- Oracles generate hints that are simple for them to yield, but that would be hard to have the validators reconstruct.
\(\rightarrow\) Defensive, hash-consed symbolic execution is an efficient way of validating a class of intra-procedural transformations!

\section*{Conclusion}

\section*{Insights}

Formally verified defensive programming helps in validating advanced compiler optimizations:
- A formally verified interpreter only does simple computations;
- Oracles generate hints that are simple for them to yield, but that would be hard to have the validators reconstruct.
\(\rightarrow\) Defensive, hash-consed symbolic execution is an efficient way of validating a class of
intra-procedural transformations!

\section*{Future work}

Can we extend this principle for security (in contrast to safety) applications?

\section*{Conclusion}

\section*{Insights}

Formally verified defensive programming helps in validating advanced compiler optimizations:
- A formally verified interpreter only does simple computations;
- Oracles generate hints that are simple for them to yield, but that would be hard to have the validators reconstruct.
\(\rightarrow\) Defensive, hash-consed symbolic execution is an efficient way of validating a class of
intra-procedural transformations!

\section*{Future work}

Can we extend this principle for security (in contrast to safety) applications?
(1) To prove the insertion of security countermeasures (correctness)
(2) To provide some security guarantees w.r.t. an abstract attacker model

\section*{Thank You! Questions?}

Online code:-CompCert version at:
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

> Manuscript (frozen) СомрСеRт version at:
> https://framagit.org/yukit/compcert-chamois-gl-thesis

Main publications:
- Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino. "Formally Verified Superblock Scheduling.", CPP 2022.
- Léo Gourdin. "Lazy Code Transformations in a Formally Verified Compiler.", ICOOOLPS 2023.
- David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel. "Testing a Formally Verified Compiler.", TAP 2023.
- Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard. "Formally Verifying Optimizations with Block Simulations.", OOPSLA 2023.

\section*{Appendices}
- Peephole \& Postpass on AArch64
- If-lifting
- Loop Unrollings
- CompCert's Trusted Computing Base
- Safe translation validation in Coq
- Hash-consing
- Why on RISC-V?
- BTL syntax \& semantics
- RISC-V macros expansions \& mini-CSE
- Predicates for Lazy Code Transformations
- Diagrammatic proof of blockstep simulation
- Development size
- More benchmark results

\section*{Peephole pairing load (and store) instructions on AArch64}
[Gourdin 2021; Six et al. 2022]
```

w1 := ldr [x6, \#0]
w2 := add w4, w3
w4 := ldr [x6, \#4] // WAR w4
str w2, [x1, \#4]
w5 := ldr [x3, \#4]
w6 := add w5, w3 // RAW w5
w7 := ldr [x3, \#0]

```
```

w2 := add w4, w3
w1, w4 := ldp [x6, \#0] // WAR w4
str w2, [x1, \#4]
w7, w5 := ldp [x3, \#0]
w6 := add w5, w3 // RAW w5

```

Source
Rewriting rule before symbolic simulation:
under guard \(r_{1} \neq r_{2}\)
\[
\begin{array}{ll}
r_{1}, r_{2}:=\mathbf{l d p}\left[r_{3}, \# n\right] \quad \rightarrow \quad & r_{2}:=r_{3} \\
& r_{1}:=\mathbf{l d r}\left[r_{3}, \# n\right] \\
& r_{2}:=\mathbf{l d r}\left[r_{2}, \# n+4\right]
\end{array}
\]

Proving the correctness of this rewriting rule is much easier
than a direct proof on the peephole optimization.

\section*{Example: the finer capabilities of postpass (on AArch64)}

Reordering an instruction expanded at the Asm level
```

int main(int x, int y) {
int z = x << 32;
y = y - z;
return x + y;
}

```
```

I
I
I}3\mathrm{ sub w3, w1, w2
I4 add w0, w0, w3
I5 ldr x30, [sp, \#8]
I}6\mathrm{ add sp, sp, \#16
I7 ret x30

```
```

I
I5 ldr x30, [sp, \#8]
I
I}6\mathrm{ add sp, sp, \#16
I}3\mathrm{ sub w3, w1, w2
I4 add w0, w0, w3
I7 ret x30

```

Before postpass
After postpass
Main difference: the load of the return address is lifted.

\section*{Latencies}

LSL=2; LDR=3; others=1

\section*{Stalls info}
(1) w2 is not ready!
(2) sp is not ready!
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{bad scheduling} \\
\hline & EXEC1 & EXEC2 \\
\hline \multirow{8}{*}{7
5
5
0
0
0
0
0} & \(I_{1}\) & \\
\hline & \(I_{2}\) & \\
\hline & stall \(_{1}\) & \(I_{2}\) \\
\hline & \(I_{3}\) & \\
\hline & \(I_{4}\) & 15 \\
\hline & stall \(_{2}\) & \(I_{5}\) \\
\hline & stall \(_{2}\) & \(I_{5}\) \\
\hline & \(I_{6}\) & \\
\hline
\end{tabular}
good scheduling
\begin{tabular}{cc}
\hline EXEC1 & EXEC2 \\
\hline\(I_{1}\) & \(I_{5}\) \\
\(I_{2}\) & \(I_{5}\) \\
\(I_{2}\) & \(I_{5}\) \\
\(I_{6}\) & \(I_{3}\) \\
\(I_{4}\) &
\end{tabular}

8 versus 5 cycles,
3 cycles are won!

\section*{Instruction Level Parallelism}


Two dimensions of parallelism
vertical: several stages of computing units
horizontal: several units at the same stage

Usually interlocked pipeline: observationnally, assembly semantics is sequential! (with dynamically inserted stalls)

\section*{On VLIW processors:}
horizontal parallelism specified by the assembly program
(i.e. "tiny-scope" parallelism).

\section*{Certifying Peephole \& Postpass by translation validation}

How it works?

- Adapted from [Six et al. 2020]
- Generic verifier backend, specialized Domain Specification Language
- The verifier proof is independent of the transformations

\section*{Asmblock implementation \& basic blocks structure}

Basic block: A block with at most one branching instruction, in final position. The sequence is only reachable at its first instruction.
```

Inductive basic: Type := (* basic instructions *)
Inductive control: Type := (* control-flow instructions *)
Record bblock := {
header: list label; body: list basic; exit: option control;
correct: Is_true(non_empty_body body || non_empty_exit exit)
}

```

State (rs,m): A tuple of a register state rs (mapping registers to values) and a memory state \(m\) (mapping addresses to values).

The basic block is executed from \(\binom{r s_{0}}{m_{0}}\) to \(\binom{r s_{n}}{m_{n}}\) :
\[
\binom{r s_{0}}{m_{0}} \xrightarrow[{\text { bstep } f\left[b_{1} ; b_{2} ; \cdots ; b_{n}\right] r s_{0} m_{0}}]{\stackrel{\text { bstep }}{\longrightarrow}\binom{r s_{1}}{m_{1}} \xrightarrow{\text { bstep }} \cdots \stackrel{\text { bstep }}{\longrightarrow}\binom{r s_{n-1}}{m_{n-1}} \xrightarrow{\text { estep }}}\binom{r s_{n}}{m_{n}}
\]

\section*{A Domain Specific Language for symbolic execution of assembly code}
(1) Code is translated in the generic AbstractBasicBlock DSL

2 A symbolic execution is run to compute "symbolic states"
(3) Simulation is deduced from syntactical equalities on "symbolic states"


\section*{Assembly level framework: proof effort and benefits}

Overall implementation: three man-months of development.
- Machblock to Asmblock: A difficult star simulation
- Peephole/postpass proof in Asmblock: a simple lockstep simulation
- Asmblock to Asm: a plus simulation

Simulation property of the verifier :
```

Definition bblock_simu (lk: aarch64_linker)
(ge: Genv.t fundef unit) (f: function) (bb bb': bblock):=
\foralls m rs' m' t,
exec_bblock lk ge f bb rs m t rs' m' }
exec_bblock lk ge f bb' rs m t rs' m'

```

\section*{Bug found while implementing the verifier}
- Difference between the formal specification of Asm and the "printer"
- Concerns Pfmovimmd and Pfmovimms macro-instructions
- Instruction behavior was not fully specified

\section*{Go back to slide 31.}

Interleaving of rotated \& unrolled loop-bodies on Cortex A-53 (AArch64)
```

double sumsq(double *x, int len){
double s = 0.0; for (int i=0; i < len; i++) s += x[i]*x[i];
return s;
}

```
```

.L101: // DO-WHILE loop
ldr d2,[x0,w2,sxtw \#3]
fmul d1, d2, d2
fadd d0, d0, d1 // d0 += x[w2] 2
add w2, w2, \#1
cmp w2, w1
b.ge .L100 // end body 1
ldr d2,[x0,w2,sxtw \#3]
fmul d1, d2, d2
fadd d0, d0, d1
add w2, w2, \#1
cmp w2, w1
b.lt .L101 // end body 2
.L100: // loop exit
// only do is live here

```
```

.L101:
ldr d2,[x0,w2,sxtw \#3]
add w2, w2, \#1
cmp w2, w1
b.ge .L102
ldr d3,[x0,w2,sxtw \#3]
add w2, w2, \#1
fmul d1, d2, d2
cmp w2, w1
fmul d4, d3, d3
fadd d0, d0, d1
fadd d0, d0, d4
b.lt .L101
b .L100
.L102:
fmul d1, d2, d2
fadd d0, d0, d1

```
```

.L100 :

```
```

.L100 :

```

Gain of right hand-side schedule \(\simeq\) \(30 \%\) wrt the (above) source order.

\section*{Go back to slide 31.}

\section*{Validating loop-unrollings through CFG-projections}

Various loop-unrollings (below) from the source "while-do" loop on the right
\[
\begin{array}{ll}
A=\text { before the loop } & B=\text { loop-condition } \\
C=\text { loop-body } & D=\text { after the loop }
\end{array}
\]


(i.e. if-do-while)

unroll 1st iteration

unroll body

\section*{Go back to slide 31.}

\section*{The main parts of CompCert Trusted Computing Base (TCB)}
- formal semantics of the CompCert C language (in Coo);
- formal semantics of the assembly languages (in Coo);
- option parsing and filename handling (in ОСамl);
- preprocessor (partly external, partly in OCaml), which turns regular C into CompCert C;
- "assembly expansions" (in ОСАмд) dealing with "pseudo-instructions" for stack (de)allocation \& memory copy;
- formal axiomatization (in Coq) of these pseudo-instructions;
- assembly pretty-printer (in OCAML);
- compatibility of the ABI used by CompCert with other libraries (e.g. standard C library) compiled on the system with GCC;
- external assembler and linker;
- CoQ TCB (+ "purity of oracles is not used in the CoQ proof")

\section*{Go back to slide 31.}

\section*{Translation validation in CoQ}

Declaring a foreign function in CoQ using an axiom is not totally safe:
\(\Rightarrow\) OCAMl "function" are not functions in a mathematical pov, but "relations", as they are nondeterministics.

Existing oracles in CompCert are declared as "pure" functions:
Example of register allocation:
```

Axiom regalloc: RTL.func }->\mathrm{ option LTL.func

```
implemented by imperative OCAML code using hash-tables.
\(\Rightarrow\) not a real issue, as their purity is not used in the formal proof;
Successfully applied in the VPL (Verified Polyhedra Library)
[Boulmé, Fouilhé, Maréchal, Monniaux, Périn, etc'2013-2018]
And partially applied in our version of CompCert
[Boulmé, Gourdin, Fasse, Monniaux, Six'2018-2023]

\section*{The Impure library}
(1) We rely on the Impure library [Boulmé 2021] to model OCaml foreign functions as nondeterministic ones;

2 Based on may-return monads of [Fouilhé and Boulmé 2014] to make determinism unprovable

IMPURE computation \(\triangleq\) COQ code embedding OCAML code
- Axiomatize (in Coo) " \(A \rightarrow\) Prop" as type "?? \(A\) "
to represent "impure computations of type \(A\) " with " \((k a)\) " as proposition " \(k \rightsquigarrow a\) "
with formal type \(\rightsquigarrow_{A}\) : ?? \(A \rightarrow A \rightarrow\) Prop
read "computation \(k\) may return value \(a\) "
and usual monad operators
- "?? \(A\) " extracted like " \(A\) ".

\section*{Features of this approach}

Summary of our approach:
- Almost any OCaml function embeddable into Coq. (e.g. mutable data-structures with aliasing in CoQ )
- No formal reasoning on effects, only on results: foreign functions could have bugs, only their type is ensured.
\(\Rightarrow\) Considered as nondeterministic.
e.g. for I/O reasoning, use FreeSpec or InteractionTrees instead.
- OCaml polymorphism provides "theorems-for-free" (i.e. a form of unary parametricity through CoQ extraction)
- Exceptionally: additional axioms on results (e.g. pointer equality) In this case, the foreign function must be trusted!

\section*{Go back to slide 31.}

\section*{Verified defensive hash-consing factory from pointer equality}

Hash-consing of inductive type T consists in memoizing its constructors through a dedicated factory.
[Six et al. 2020] gives a verified defensive variant of [Filliâtre and Conchon 2006]:
- a polymorphic oracle provides-for any T -an untrusted hash-consing factory of type \(\mathrm{T} \rightarrow\) ?? T ;
- this factory is wrapped into a certified factory dynamically enforcing that each returned term is structurally equals to its inputs...
- ...through a constant-time checking that, on input \(\left(c t_{1} \ldots t_{n}\right)\) and output \(\left(c^{\prime} t_{1}^{\prime} \ldots t_{m}^{\prime}\right)\), we have \(c=c^{\prime}\) and that forall \(i, t_{i}==t_{i}^{\prime}\)
works in practice because of (the non-formalized) invariant:
\[
\text { all } t_{i} \text { are already "hash-consed" terms }
\]

\section*{Go back to slide 31.}

\section*{Why targetting RISC-V for Strength Reduction?}

CompCert is particularly slow on RISC-V.
(1) Less work went on this backend;
(2) Instruction Set Architecture (ISA) is simpler;
(3) Addressing modes are very limited;
e.g. consider a load in C" \(\mathrm{x}=\mathrm{a}\) [i]", CompCert produces:

On AArch64:
On RISC-V:
ldr \(x 0\), [ \(x 0, w 1\), sxtw\#3]
```

slli x6, x11, 3
add x6, x10, x6
ld x6, 0(x6)

```
(4) RISC-V is a good candidate for the future of embedded (and critical) systems. e.g. NOEL-V for space; openness of hardware; modularity

Porting the LCT's strength reduction to other backends should be straightforward ( \(\sim 140\) LoC).

\section*{Go back to slide 31.}

\section*{The BTL IR: A syntax-based block representation}
\[
\begin{aligned}
f i:: & =\operatorname{Bgoto}(l) \\
& \mid \operatorname{Breturn}([r]) \\
& \mid \operatorname{Bcall}(\operatorname{sig},(r \mid i d), \vec{r}, r, l) \\
& \mid \operatorname{Btailcall}(s i g,(r \mid i d), \vec{r}) \\
& \mid \operatorname{Bbuiltin}(e f, \overrightarrow{b r}, b r, l) \\
& \mid \operatorname{Bjumptable}(r, \vec{l})
\end{aligned}
\]

Keeping a block structure is interesting for at least two reasons:
(1) Invariants are checked for blocks instead of every instruction;

2 Block-scoped optimizations (e.g. scheduling) are still compatible.

\section*{Two shades of BTL Invariants}
\(\Rightarrow\) To avoid redundancies in invariants and facilitate their generation by oracles.

\section*{An abstract (theorical) representation}

\section*{Assignments of invariant values (into reg).}
```

(** FPASV: "Finite Parallel Assignment of Symbolic Values" *)
Record fpasv :=
{ fpa_ok: list sval; fpa_reg:> PTree.tree sval;
fpa_wf: \forall r sv, fpa_reg!r = Some sv }->\mathrm{ ~(is_input sv) }->\mathrm{ List.In sv fpa_ok }

```

\section*{A more compact representation}

In the set of output registers, we distinguish those not defined in aseq (which satisfy [r:=Sinput r]).
```

(** CSASV: "Compact Sequence Assignments of Symbolic Values" *)
Record csasv := {
aseq: list (reg * ival);
outputs: Regset.t;
}

```

\section*{Go back to slide 31.}

\section*{Rewritings \& mini-CSE over superblocks on RISC-V (1/3)}
```

long foo(int x, char y, long *t) {
int z = x / 4096;
y = x / 256;
t[0] = t[1] * t[2];
if (x + z < 7) {
if (y<7)
return 421 + t[0];
}
return x + y - t[0];
}

```

Colors delimit superblocks.
- Sub-optimal ordering
- Macros (in pink) are not expansed
```

Bop: x4 = x3 >> 12 \# 1
Bop: x15 = x3 >> 8 \# 2
Bop: x2 = x15 \& 255
Bload: x13 = int64[x1 + 8]
Bload: x14 = int64[x1 + 16]
Bop: x12 = x13 *l x14
Bstore: int64[x1 + 0] = x12
Bop: x11 = x3 + x4
Bcond: (x11 >=s 7) \# 3
ifso = [Bgoto: 7]
Bcond: (x2 <s 7) \# 4
ifso = [Bgoto: 10]
Bgoto: 7
Non-optimized RISC-V
CompCert code (uncolored is orange)

```

\section*{Rewritings \& mini-CSE over superblocks on RISC-V (2/3)}

- No duplications thks to mini-CSE on the expansion of \#3 and \#4
- Bad ordering
- Makespan is 14 on U74
```

Bop: x16 = x3 >> 31 \# 1
Bop: x17 = x16 >> 20 \# 1
Bop: x18 = x3 + x17 \# 1
Bop: x4 = x18 >> 12 \# 1
Bop: x20 = x16 >> 24 \# 2
Bop: x21 = x3 + x20 \# 2
Bop: x15 = x21 >> 8 \# 2
Bop: x2 = x15 \& 255
Bload: x13 = int64[x1 + 8]
Bload: x14 = int64[x1 + 16]
Bop: x12 = x13 *l x14
Bstore: int64[x1 + 0] = x12
Bop: x11 = x3 + x4
Bop: x22 = OEaddiw(X0,7) \# 3,4
Bcond: (CEbgew(x11 >= x22)) \# 3
ifso = [Bgoto: 7]
Bcond: (CEbltw(x2 < x22)) \# 4
ifso = [Bgoto: 10]
Bgoto: 7

```

\section*{Pre-processed RISC-V}

CompCert code (uncolored is orange)

\section*{Rewritings \& mini-CSE over superblocks on RISC-V (3/3)}
```

long foo(int x, char y, long *t) {
int z = x / 4096;
y = x / 256;
t[0] = t[1] * t[2];
if (x + z< 7) {
if (y<7)
return 421 + t[0];
}
y = y - z;
return x + y - t[0];
}

```

\section*{We won 5 cycles!}
- Better ordering
- Makespan is reduced to 9 thanks to avoided stalls
```

Bop: x16 = x3 >>s 31
Bload: x13 = int64[x1 + 8]
Bop: x17 = x16 >>u 20
Bload: x14 = int64[x1 + 16]
Bop: x18 = x3 + x17
Bop: x20 = x16 >> 24
Bop: x4 = x18 >>s 12
Bop: x21 = x3 + x20
Bop: x15 = x21 >>s 8
Bop: x12 = x13 *l x14
Bop: x2 = x15 \& 255
Bop: x11 = x3 + x4
Bop: x22 = OEaddiw(X0,7)
Bstore: int64[x1 + 0] = x12
Bcond: (CEbgew(x11 >= x22))
ifso = [Bgoto: 7]
Bcond: (CEbltw (x2 < x22))
ifso = [Bgoto: 10]
Bgoto: 7

```

Optimized RISC-V CompCert code (uncolored is orange)

\section*{Go back to slide 31.}

\section*{Bit vector predicates for LCT (non-exhaustive list)}

Candidates (of the form \(n \equiv v:=t\) at node \(n\), writing term \(t\) in variable \(v\) ) are operations or loads. Boolean equation systems to solve for each node, and for each candidate:
- Transparency: the node does not alter the candidate expr.;
- Comp: the node contains a computation of the candidate;
- Down-safety: a computation \(t\) at \(n\) does not introduce a new value on a terminating path starting at \(n\);
- Up-safety: same for every path leading at \(n\);
- Earliestness: can't be placed earlier without breaking the safety property;
- Delayability: possibility to move the inserted value from its earliest down-safe point as far as possible in the direction of the control-flow;
- Latestness: optimality of delayability (maximum delay);
- Isolatedness: the inserted computation would be isolated in its block;
- Insert: Candidate should be inserted at this node;
- Replace: Candidate should be replaced at this node.

\section*{Go back to slide 31.}

\section*{Diagrammatic proof of blockstep simulation}

(3): Correctness of the modulo liveness relation

\section*{Go back to slide 31.}

\section*{An idea of the development size}

In number of significant lines of code (sloc)...
\begin{tabular}{|l|r|r|}
\hline Project & Defs & Proofs \\
\hline BTL IR & 252 & 20 \\
BTL projection checker & 296 & 121 \\
RTL \(\rightarrow\) BTL & 313 & 377 \\
BTL \(\rightarrow\) RTL & 146 & 249 \\
BTL SE theory & 1844 & 1862 \\
BTL SE refinement & 1612 & 1411 \\
BTL rewriting engine (RISC-V only) & 1209 & 1038 \\
BTL passes module & 122 & 60 \\
Total & 5794 & 5138 \\
\hline \hline Project & OcamI & Coq \\
\hline BTL oracles \& framework & 3332 & 10932 \\
AArch64 scheduling \& peephole & 1157 & 11171 \\
Total & 4489 & 22103 \\
\hline
\end{tabular}

LCT oracle combining code motion \& strength reduction: 2000 sloc

\section*{Go back to slide 31.}

\section*{Compilation time of slowest CompCert passes}


\section*{Results zooming on the LCT impact}

GCC, Base=(scheduling + CSE3 + unroll single), and Base+LCT versus mainline CompCert on RISC-V U74, higher is better
\begin{tabular}{|l|c|c|c|}
\hline Setup & GCC -O1 & Base & Base + LCT \\
\hline LLVMtest/fpconvert & \(+24.22 \%\) & \(+7.9 \%\) & \(+17.15 \%\) \\
LLVMtest/matmul & \(+15.9 \%\) & \(+115.05 \%\) & \(+144.11 \%\) \\
LLVMtest/nbench_bf & \(+74.58 \%\) & \(+11.84 \%\) & \(+24.51 \%\) \\
MiBench/jpeg & \(+27.75 \%\) & \(+20.62 \%\) & \(+24.75 \%\) \\
MiBench/sha & \(+92.43 \%\) & \(+45.68 \%\) & \(+51.73 \%\) \\
MiBench/stringsearch & \(+133.34 \%\) & \(+40.28 \%\) & \(-10.15 \%\) \\
PolyBench/* & \(+64.05 \%\) & \(+38.06 \%\) & \(+46.23 \%\) \\
TACLeBench/bsort & \(+49.04 \%\) & \(+9 \%\) & \(+33.16 \%\) \\
TACLeBench/deg2rad & \(+56.75 \%\) & \(+41.5 \%\) & \(+50.28 \%\) \\
TACLeBench/md5 & \(+42.18 \%\) & \(+18.59 \%\) & \(+47.93 \%\) \\
\hline
\end{tabular}

\section*{Go back to slide 31.}```


[^0]:    Black: original CompCert passes
    Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC $+x 86$ )

[^1]:    Black: original CompCert passes
    Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
    Brown:RISC-V only
    Violet: AArch64+ARMv7+RISC-V+KVX
    Red: AArch64+KVX

[^2]:    leo.gourdin@univ-grenoble-alpes.fr

