
Formal Validation of Intra-Procedural Transformations
by Defensive Symbolic Simulation

PhD Defense of Léo Gourdin — 12/12/2023

leo.gourdin@univ-grenoble-alpes.fr
Advisors:
Sylvain Boulmé (Verimag)
Frédéric Pétrot (TIMA)

Committee:
Delphine Demange — Examiner
Jean-Christophe Filliâtre — Rapporteur
Jens Knoop — Rapporteur
Marc Pouzet — Examiner
Gwen Salaün — Examiner

leo.gourdin@univ-grenoble-alpes.fr 1/30

Contents

1 Introduction

2 Motivating Example

3 Lazy Code Transformations

4 Symbolic Simulation

5 Evaluation & Conclusion

leo.gourdin@univ-grenoble-alpes.fr 2/30

Motivations: compilation bugs
[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate & optimize programs (source language → target language).

C program
Compiler

how to avoid
introducing bugs?

Assembly
program

Optimizations: buggiest component
(except for the C++ component)
in both GCC and LLVM.

Bugs may alter program semantics, and thus program behavior.

Avoiding bugs in safety-critical systems (planes, trains, elevators, …) is essential.

• > 50% optimizations bugs result in incorrect generated code
• Last 20 years: > 8700 optimization bugs identified in GCC (vs. > 1500 for LLVM)
• Bugs that crash compiler are easier to trace than optimization bugs

leo.gourdin@univ-grenoble-alpes.fr 3/30

Motivations: compilation bugs
[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate & optimize programs (source language → target language).

C program
Compiler

how to avoid
introducing bugs?

Assembly
program

Optimizations: buggiest component
(except for the C++ component)
in both GCC and LLVM.

Bugs may alter program semantics, and thus program behavior.

Avoiding bugs in safety-critical systems (planes, trains, elevators, …) is essential.

• > 50% optimizations bugs result in incorrect generated code
• Last 20 years: > 8700 optimization bugs identified in GCC (vs. > 1500 for LLVM)
• Bugs that crash compiler are easier to trace than optimization bugs

leo.gourdin@univ-grenoble-alpes.fr 3/30

Motivations: compilation bugs
[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate & optimize programs (source language → target language).

C program
Compiler

how to avoid
introducing bugs?

Assembly
program

Optimizations: buggiest component
(except for the C++ component)
in both GCC and LLVM.

Bugs may alter program semantics, and thus program behavior.

Avoiding bugs in safety-critical systems (planes, trains, elevators, …) is essential.

• > 50% optimizations bugs result in incorrect generated code
• Last 20 years: > 8700 optimization bugs identified in GCC (vs. > 1500 for LLVM)
• Bugs that crash compiler are easier to trace than optimization bugs

leo.gourdin@univ-grenoble-alpes.fr 3/30

Motivations: compilation bugs
[Yang et al. 2011; Sun et al. 2016; Zhou et al. 2021]

Compilers: translate & optimize programs (source language → target language).

C program
Compiler

how to avoid
introducing bugs?

Assembly
program

Optimizations: buggiest component
(except for the C++ component)
in both GCC and LLVM.

Bugs may alter program semantics, and thus program behavior.

Avoiding bugs in safety-critical systems (planes, trains, elevators, …) is essential.

• > 50% optimizations bugs result in incorrect generated code
• Last 20 years: > 8700 optimization bugs identified in GCC (vs. > 1500 for LLVM)
• Bugs that crash compiler are easier to trace than optimization bugs

leo.gourdin@univ-grenoble-alpes.fr 3/30

The CompCert compiler, verified in Coq
[Blazy et al. 2006; Leroy 2009]

CompCert (ACM Software System & ACM Programming Languages Software Awards):

is the 1st formally verified C compiler

C program

CompCert
translation +
(moderate)
optimization

Assembly
program

Coq proof of semantics preservation

Formal correctness of CompCert:
For any source program S in C language,
if S has no undefined behavior, and if
the compiler returns some assembly program T ,
then any behavior of T is also a behavior of S.

However… it is still less optimizing than “trusted” (non-proven) compilers (e.g. GCC)

Embedded/safe often means simple: compiler optimizations are then even more important.

leo.gourdin@univ-grenoble-alpes.fr 4/30

The CompCert compiler, verified in Coq
[Blazy et al. 2006; Leroy 2009]

CompCert (ACM Software System & ACM Programming Languages Software Awards):

is the 1st formally verified C compiler

C program

CompCert
translation +
(moderate)
optimization

Assembly
program

Coq proof of semantics preservation

Formal correctness of CompCert:
For any source program S in C language,
if S has no undefined behavior, and if
the compiler returns some assembly program T ,
then any behavior of T is also a behavior of S.

However… it is still less optimizing than “trusted” (non-proven) compilers (e.g. GCC)

Embedded/safe often means simple: compiler optimizations are then even more important.

leo.gourdin@univ-grenoble-alpes.fr 4/30

The CompCert compiler, verified in Coq
[Blazy et al. 2006; Leroy 2009]

CompCert (ACM Software System & ACM Programming Languages Software Awards):

is the 1st formally verified C compiler

C program

CompCert
translation +
(moderate)
optimization

Assembly
program

Coq proof of semantics preservation

Formal correctness of CompCert:
For any source program S in C language,
if S has no undefined behavior, and if
the compiler returns some assembly program T ,
then any behavior of T is also a behavior of S.

However… it is still less optimizing than “trusted” (non-proven) compilers (e.g. GCC)

Embedded/safe often means simple: compiler optimizations are then even more important.

leo.gourdin@univ-grenoble-alpes.fr 4/30

Goal: correct & efficient code for embedded cores

Predictability, security, or safety norms often require [França et al. 2012]:
• no dynamic reordering inside processors (instruction scheduling)
• no speculative execution (guessing conditions)
• simpler instruction sets, such as RISC-V

→ efficiency is therefore the compiler’s job

Many optimizations of GCC/LLVM are still missing:

Code Motion: moving instructions at better places, e.g. out of loops

Strength-reduction: replacing costly instructions (e.g. multiplications)
by simpler ones (e.g. additions)

Software pipelining: optimization of loop bodies (e.g. by scheduling instructions
above/below conditions)

leo.gourdin@univ-grenoble-alpes.fr 5/30

Goal: correct & efficient code for embedded cores

Predictability, security, or safety norms often require [França et al. 2012]:
• no dynamic reordering inside processors (instruction scheduling)
• no speculative execution (guessing conditions)
• simpler instruction sets, such as RISC-V

→ efficiency is therefore the compiler’s job

Many optimizations of GCC/LLVM are still missing:

Code Motion: moving instructions at better places, e.g. out of loops

Strength-reduction: replacing costly instructions (e.g. multiplications)
by simpler ones (e.g. additions)

Software pipelining: optimization of loop bodies (e.g. by scheduling instructions
above/below conditions)

leo.gourdin@univ-grenoble-alpes.fr 5/30

Goal: correct & efficient code for embedded cores

Predictability, security, or safety norms often require [França et al. 2012]:
• no dynamic reordering inside processors (instruction scheduling)
• no speculative execution (guessing conditions)
• simpler instruction sets, such as RISC-V

→ efficiency is therefore the compiler’s job

Many optimizations of GCC/LLVM are still missing:

Code Motion: moving instructions at better places, e.g. out of loops

Strength-reduction: replacing costly instructions (e.g. multiplications)
by simpler ones (e.g. additions)

Software pipelining: optimization of loop bodies (e.g. by scheduling instructions
above/below conditions)

leo.gourdin@univ-grenoble-alpes.fr 5/30

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku…
…but checking a sudoku solution for correctness is much easier!

We call this idea

Defensive

Translation Validation

Used for Register Allocation
[Rideau and Leroy 2010]

S : Source
Function

Validator

Oracle

T : Target
Function

Simulates

Hints

Produces

Verifies

Trusted
(Coq)

Untrusted
(OCaml)

Complex computations by efficient functions, called oracles, with an untrusted and hidden
implementation for the formal proof.
→ only a dynamic defensive test of their result is formally verified

leo.gourdin@univ-grenoble-alpes.fr 6/30

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku…
…but checking a sudoku solution for correctness is much easier!

We call this idea

Defensive

Translation Validation

Used for Register Allocation
[Rideau and Leroy 2010]

S : Source
Function

Validator

Oracle

T : Target
Function

Simulates

Hints

Produces

Verifies

Trusted
(Coq)

Untrusted
(OCaml)

Complex computations by efficient functions, called oracles, with an untrusted and hidden
implementation for the formal proof.

→ only a dynamic defensive test of their result is formally verified

leo.gourdin@univ-grenoble-alpes.fr 6/30

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku…
…but checking a sudoku solution for correctness is much easier!

We call this idea

Defensive

Translation Validation

Used for Register Allocation
[Rideau and Leroy 2010]

S : Source
Function

Validator

Oracle

T : Target
Function

Simulates

Hints

Produces

Verifies

Trusted
(Coq)

Untrusted
(OCaml)

Complex computations by efficient functions, called oracles, with an untrusted and hidden
implementation for the formal proof.
→ only a dynamic defensive test of their result is formally verified

leo.gourdin@univ-grenoble-alpes.fr 6/30

Formally verified translation validation

Proving such complex optimizations is difficult, like solving a sudoku…
…but checking a sudoku solution for correctness is much easier!

We call this idea Defensive
Translation Validation

Used for Register Allocation
[Rideau and Leroy 2010]

S : Source
Function

Validator

Oracle

T : Target
Function

Simulates

Hints

Produces

Verifies

Trusted
(Coq)

Untrusted
(OCaml)

Complex computations by efficient functions, called oracles, with an untrusted and hidden
implementation for the formal proof.
→ only a dynamic defensive test of their result is formally verified

leo.gourdin@univ-grenoble-alpes.fr 6/30

A few details on CompCert’s formalism

Program behavior , sequence of observable events

Undefined behavior , “errors” in the C semantics

Theorem of correctness by composing forward simulations between deterministic languages.

S1 S2

S ′1 S ′2

∼

e e +

∼
or

S1 S2

S ′1

∼

ε
∼

with |S ′1| < |S1|

Each source step S1 →e S ′1 is simulated by target steps
without infinite successive stutterings;

absence of step represents Undefined Behavior

leo.gourdin@univ-grenoble-alpes.fr 7/30

Motivating RISC-V example (1/2)

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

CompCert optimizations are applied on
register transfer language (RTL)

Left frame: naive RISC-V (pseudo)code
(mainline CompCert)!

leo.gourdin@univ-grenoble-alpes.fr 8/30

Motivating RISC-V example (1/2)

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

CompCert optimizations are applied on
register transfer language (RTL)

Left frame: naive RISC-V (pseudo)code
(mainline CompCert)!

leo.gourdin@univ-grenoble-alpes.fr 8/30

Motivating RISC-V example (1/2)

1 foo(a, v, n) {
2 k = 7; i = 0; r = 2f
3 x17 = float64[a+0] // previous occurrence
4 if (x17 <f r) { goto Exit }
5 Loop:
6 if (i >=ls n) { goto Exit }
7 x16 = float64[a+8] // a[1] (unsafe)
8 if (r >=f x16) {
9 x14 = float64[a+0]; // safe to eliminate

10 r = r -f x14 }
11 else { x15 = 3f; r = r *f x15 } // PRE
12 x13 = i <<l 3 // SR (addressing)
13 x12 = v +l x13 // SR (in sequence)
14 x10 = int64[x12+0]
15 x11 = i *l k // SR
16 x9 = x10 -l x11
17 x8 = floatoflong(x9)
18 r = r +f x8
19 i = i +l 4
20 goto Loop
21 Exit: return r }

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

CompCert optimizations are applied on
register transfer language (RTL)

Left frame: naive RISC-V (pseudo)code
(mainline CompCert)!

leo.gourdin@univ-grenoble-alpes.fr 8/30

Motivating RISC-V example (2/2)

1 foo(a, v, n) {
2 k = 7; i = 0; r = 2f
3 x17 = float64[a+0] // previous occurrence
4 if (x17 <f r) { goto Exit }
5 Loop:
6 if (i >=ls n) { goto Exit }
7 x16 = float64[a+8] // a[1] (unsafe)
8 if (r >=f x16) {
9 x14 = float64[a+0]; // safe to eliminate

10 r = r -f x14 }
11 else { x15 = 3f; r = r *f x15 } // PRE
12 x13 = i <<l 3 // SR (addressing)
13 x12 = v +l x13 // SR (in sequence)
14 x10 = int64[x12+0]
15 x11 = i *l k // SR
16 x9 = x10 -l x11
17 x8 = floatoflong(x9)
18 r = r +f x8
19 i = i +l 4
20 goto Loop
21 Exit: return r }

What is needed?

• partial loop invariant redundancy:
load of constant 3

• redundant load of
• a[0] (available before the loop)
• a[1] (only in the loop)

• Strength reduction of
• source multiplication k * i
• addressing calculation for v[i]

→ was decomposed by
instruction selection!

• + possibility to schedule some
instructions in a better way
(not explained in this presentation)

leo.gourdin@univ-grenoble-alpes.fr 9/30

Motivating RISC-V example (2/2)

1 foo(a, v, n) {
2 k = 7; i = 0; r = 2f
3 x17 = float64[a+0] // previous occurrence
4 if (x17 <f r) { goto Exit }
5 Loop:
6 if (i >=ls n) { goto Exit }
7 x16 = float64[a+8] // a[1] (unsafe)
8 if (r >=f x16) {
9 x14 = float64[a+0]; // safe to eliminate

10 r = r -f x14 }
11 else { x15 = 3f; r = r *f x15 } // PRE
12 x13 = i <<l 3 // SR (addressing)
13 x12 = v +l x13 // SR (in sequence)
14 x10 = int64[x12+0]
15 x11 = i *l k // SR
16 x9 = x10 -l x11
17 x8 = floatoflong(x9)
18 r = r +f x8
19 i = i +l 4
20 goto Loop
21 Exit: return r }

What is needed?
• partial loop invariant redundancy:

load of constant 3

• redundant load of
• a[0] (available before the loop)
• a[1] (only in the loop)

• Strength reduction of
• source multiplication k * i
• addressing calculation for v[i]

→ was decomposed by
instruction selection!

• + possibility to schedule some
instructions in a better way
(not explained in this presentation)

leo.gourdin@univ-grenoble-alpes.fr 9/30

Motivating RISC-V example (2/2)

1 foo(a, v, n) {
2 k = 7; i = 0; r = 2f
3 x17 = float64[a+0] // previous occurrence
4 if (x17 <f r) { goto Exit }
5 Loop:
6 if (i >=ls n) { goto Exit }
7 x16 = float64[a+8] // a[1] (unsafe)
8 if (r >=f x16) {
9 x14 = float64[a+0]; // safe to eliminate

10 r = r -f x14 }
11 else { x15 = 3f; r = r *f x15 } // PRE
12 x13 = i <<l 3 // SR (addressing)
13 x12 = v +l x13 // SR (in sequence)
14 x10 = int64[x12+0]
15 x11 = i *l k // SR
16 x9 = x10 -l x11
17 x8 = floatoflong(x9)
18 r = r +f x8
19 i = i +l 4
20 goto Loop
21 Exit: return r }

What is needed?
• partial loop invariant redundancy:

load of constant 3
• redundant load of

• a[0] (available before the loop)
• a[1] (only in the loop)

• Strength reduction of
• source multiplication k * i
• addressing calculation for v[i]

→ was decomposed by
instruction selection!

• + possibility to schedule some
instructions in a better way
(not explained in this presentation)

leo.gourdin@univ-grenoble-alpes.fr 9/30

Motivating RISC-V example (2/2)

1 foo(a, v, n) {
2 k = 7; i = 0; r = 2f
3 x17 = float64[a+0] // previous occurrence
4 if (x17 <f r) { goto Exit }
5 Loop:
6 if (i >=ls n) { goto Exit }
7 x16 = float64[a+8] // a[1] (unsafe)
8 if (r >=f x16) {
9 x14 = float64[a+0]; // safe to eliminate

10 r = r -f x14 }
11 else { x15 = 3f; r = r *f x15 } // PRE
12 x13 = i <<l 3 // SR (addressing)
13 x12 = v +l x13 // SR (in sequence)
14 x10 = int64[x12+0]
15 x11 = i *l k // SR
16 x9 = x10 -l x11
17 x8 = floatoflong(x9)
18 r = r +f x8
19 i = i +l 4
20 goto Loop
21 Exit: return r }

What is needed?
• partial loop invariant redundancy:

load of constant 3
• redundant load of

• a[0] (available before the loop)
• a[1] (only in the loop)

• Strength reduction of
• source multiplication k * i
• addressing calculation for v[i]

→ was decomposed by
instruction selection!

• + possibility to schedule some
instructions in a better way
(not explained in this presentation)

leo.gourdin@univ-grenoble-alpes.fr 9/30

Motivating RISC-V example (2/2)

1 foo(a, v, n) {
2 k = 7; i = 0; r = 2f
3 x17 = float64[a+0] // previous occurrence
4 if (x17 <f r) { goto Exit }
5 Loop:
6 if (i >=ls n) { goto Exit }
7 x16 = float64[a+8] // a[1] (unsafe)
8 if (r >=f x16) {
9 x14 = float64[a+0]; // safe to eliminate

10 r = r -f x14 }
11 else { x15 = 3f; r = r *f x15 } // PRE
12 x13 = i <<l 3 // SR (addressing)
13 x12 = v +l x13 // SR (in sequence)
14 x10 = int64[x12+0]
15 x11 = i *l k // SR
16 x9 = x10 -l x11
17 x8 = floatoflong(x9)
18 r = r +f x8
19 i = i +l 4
20 goto Loop
21 Exit: return r }

What is needed?
• partial loop invariant redundancy:

load of constant 3
• redundant load of

• a[0] (available before the loop)
• a[1] (only in the loop)

• Strength reduction of
• source multiplication k * i
• addressing calculation for v[i]

→ was decomposed by
instruction selection!

• + possibility to schedule some
instructions in a better way
(not explained in this presentation)

leo.gourdin@univ-grenoble-alpes.fr 9/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach

BTL

MachblockAsmblock

Asm

Black: original CompCert passes

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction
Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction
Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction
Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction

Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction

Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction

Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only

Red: AArch64+KVX

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction

Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only

Red: AArch64+KVX

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction

Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Overview of my contributions in Chamois CompCert

• Block Transfer Language IR

• Intra-procedural, defensive
Symbolic Execution framework

• CM + SR: Lazy Code
Transformations algorithm

• Control Flow Graph Morphism
validator

• RISC-V expansion engine

• Port of the KVX postpass scheduler
to AArch64 + Peephole optimizer

• Experimental evaluation framework

• Extension of [Six et al. 2022]’s
superblock prepass scheduling

CompCert C RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Black: original CompCert passes
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)
Brown:RISC-V only
Violet: AArch64+ARMv7+RISC-V+KVX
Red: AArch64+KVX

Optimizations

Branch
tunneling

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

CFG Morphism

Code Motion
Strength reduction
Code Motion
Strength reduction
Immediate expansions

Peephole+Postpass scheduling

Code Motion
Strength reduction
Immediate expansions
Prepass scheduling
Dead Code Elimination

leo.gourdin@univ-grenoble-alpes.fr 10/30

Lazy Code Motion (LCM) & Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

• Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

• LCM: moves operations and loads (all platforms)
• LSR: reduces multiplications with a constant (RISC-V only)

Goals
• A “Lazy Code Transformations” (LCT) algorithm combining LCM & LSR
• Producing hints to guide the symbolic execution validator
• An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM & LSR? Data-flow algorithms fit well with
block structure and invariant inference

leo.gourdin@univ-grenoble-alpes.fr 11/30

Lazy Code Motion (LCM) & Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

• Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

• LCM: moves operations and loads (all platforms)
• LSR: reduces multiplications with a constant (RISC-V only)

Goals
• A “Lazy Code Transformations” (LCT) algorithm combining LCM & LSR
• Producing hints to guide the symbolic execution validator
• An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM & LSR? Data-flow algorithms fit well with
block structure and invariant inference

leo.gourdin@univ-grenoble-alpes.fr 11/30

Lazy Code Motion (LCM) & Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

• Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

• LCM: moves operations and loads (all platforms)

• LSR: reduces multiplications with a constant (RISC-V only)

Goals
• A “Lazy Code Transformations” (LCT) algorithm combining LCM & LSR
• Producing hints to guide the symbolic execution validator
• An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM & LSR? Data-flow algorithms fit well with
block structure and invariant inference

leo.gourdin@univ-grenoble-alpes.fr 11/30

Lazy Code Motion (LCM) & Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

• Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

• LCM: moves operations and loads (all platforms)
• LSR: reduces multiplications with a constant (RISC-V only)

Goals
• A “Lazy Code Transformations” (LCT) algorithm combining LCM & LSR
• Producing hints to guide the symbolic execution validator
• An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM & LSR? Data-flow algorithms fit well with
block structure and invariant inference

leo.gourdin@univ-grenoble-alpes.fr 11/30

Lazy Code Motion (LCM) & Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

• Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

• LCM: moves operations and loads (all platforms)
• LSR: reduces multiplications with a constant (RISC-V only)

Goals
• A “Lazy Code Transformations” (LCT) algorithm combining LCM & LSR
• Producing hints to guide the symbolic execution validator

• An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM & LSR? Data-flow algorithms fit well with
block structure and invariant inference

leo.gourdin@univ-grenoble-alpes.fr 11/30

Lazy Code Motion (LCM) & Lazy Strength Reduction (LSR)
[Knoop, Rüthing and Steffen 1992-1995]

• Intra-procedural, data-flow algorithms:
aim at computational optimality with minimal impact on register pressure (liverange)

• LCM: moves operations and loads (all platforms)
• LSR: reduces multiplications with a constant (RISC-V only)

Goals
• A “Lazy Code Transformations” (LCT) algorithm combining LCM & LSR
• Producing hints to guide the symbolic execution validator
• An efficient OCaml implementation operating over BTL in basic blocks (1 entry, 1 exit)

Why LCM & LSR? Data-flow algorithms fit well with
block structure and invariant inference

leo.gourdin@univ-grenoble-alpes.fr 11/30

How the “Lazy Code Transformations” algorithm is applied

LCT is untrusted → it was co-designed with defensive validation by Symbolic Execution:

… RTL BTL in basic blocks RTL …

previous CompCert
passes

select
blocks

LCT + SE

translate
back

pipeline
continues

LCT step-by-step
1 Joining (and critical) edges are split with synthetic (empty) nodes

→ this is needed for data-flow fixed points + code motion opportunities in BTL

2 Equation systems are solved (data-flow: 4 for code motion + 3 for strength reduction;
and a few non data-flow computations)

3 Control Flow Graph is rewritten
4 Invariant are inferred from equation results

leo.gourdin@univ-grenoble-alpes.fr 12/30

How the “Lazy Code Transformations” algorithm is applied

LCT is untrusted → it was co-designed with defensive validation by Symbolic Execution:

… RTL BTL in basic blocks RTL …

previous CompCert
passes

select
blocks

LCT + SE

translate
back

pipeline
continues

LCT step-by-step
1 Joining (and critical) edges are split with synthetic (empty) nodes

→ this is needed for data-flow fixed points + code motion opportunities in BTL

2 Equation systems are solved (data-flow: 4 for code motion + 3 for strength reduction;
and a few non data-flow computations)

3 Control Flow Graph is rewritten
4 Invariant are inferred from equation results

leo.gourdin@univ-grenoble-alpes.fr 12/30

How the “Lazy Code Transformations” algorithm is applied

LCT is untrusted → it was co-designed with defensive validation by Symbolic Execution:

… RTL BTL in basic blocks RTL …

previous CompCert
passes

select
blocks

LCT + SE

translate
back

pipeline
continues

LCT step-by-step
1 Joining (and critical) edges are split with synthetic (empty) nodes

→ this is needed for data-flow fixed points + code motion opportunities in BTL

2 Equation systems are solved (data-flow: 4 for code motion + 3 for strength reduction;
and a few non data-flow computations)

3 Control Flow Graph is rewritten
4 Invariant are inferred from equation results

leo.gourdin@univ-grenoble-alpes.fr 12/30

How the “Lazy Code Transformations” algorithm is applied

LCT is untrusted → it was co-designed with defensive validation by Symbolic Execution:

… RTL BTL in basic blocks RTL …

previous CompCert
passes

select
blocks

LCT + SE

translate
back

pipeline
continues

LCT step-by-step
1 Joining (and critical) edges are split with synthetic (empty) nodes

→ this is needed for data-flow fixed points + code motion opportunities in BTL

2 Equation systems are solved (data-flow: 4 for code motion + 3 for strength reduction;
and a few non data-flow computations)

3 Control Flow Graph is rewritten

4 Invariant are inferred from equation results

leo.gourdin@univ-grenoble-alpes.fr 12/30

How the “Lazy Code Transformations” algorithm is applied

LCT is untrusted → it was co-designed with defensive validation by Symbolic Execution:

… RTL BTL in basic blocks RTL …

previous CompCert
passes

select
blocks

LCT + SE

translate
back

pipeline
continues

LCT step-by-step
1 Joining (and critical) edges are split with synthetic (empty) nodes

→ this is needed for data-flow fixed points + code motion opportunities in BTL

2 Equation systems are solved (data-flow: 4 for code motion + 3 for strength reduction;
and a few non data-flow computations)

3 Control Flow Graph is rewritten
4 Invariant are inferred from equation results

leo.gourdin@univ-grenoble-alpes.fr 12/30

On our example: partitioning, synthetic nodes, and candidates

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Legend:

Numbering
(post-order)

Synthetic nodes

Candidates:
- Code Motion
- Strength Reduction

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

Desirable adjustments

• Restriction: our validator cannot anticipate potentially
trapping instructions (e.g. load a[1])

• Extension: the original algorithms would be unable to
reduce nested sequences

leo.gourdin@univ-grenoble-alpes.fr 13/30

On our example: partitioning, synthetic nodes, and candidates

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Legend:

Numbering
(post-order)

Synthetic nodes

Candidates:
- Code Motion
- Strength Reduction

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

Desirable adjustments

• Restriction: our validator cannot anticipate potentially
trapping instructions (e.g. load a[1])

• Extension: the original algorithms would be unable to
reduce nested sequences

leo.gourdin@univ-grenoble-alpes.fr 13/30

On our example: partitioning, synthetic nodes, and candidates

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Legend:

Numbering
(post-order)

Synthetic nodes

Candidates:
- Code Motion
- Strength Reduction

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

Desirable adjustments

• Restriction: our validator cannot anticipate potentially
trapping instructions (e.g. load a[1])

• Extension: the original algorithms would be unable to
reduce nested sequences

leo.gourdin@univ-grenoble-alpes.fr 13/30

On our example: partitioning, synthetic nodes, and candidates

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Legend:

Numbering
(post-order)

Synthetic nodes

Candidates:
- Code Motion
- Strength Reduction

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

Desirable adjustments
• Restriction: our validator cannot anticipate potentially

trapping instructions (e.g. load a[1])

• Extension: the original algorithms would be unable to
reduce nested sequences

leo.gourdin@univ-grenoble-alpes.fr 13/30

On our example: partitioning, synthetic nodes, and candidates

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Legend:

Numbering
(post-order)

Synthetic nodes

Candidates:
- Code Motion
- Strength Reduction

1 double foo(double *a, long *v, long n) {
2 long k = 7; long i = 0;
3 double r = 2;
4 if (a[0] < 2) return 2;
5 for(; i < n; i += 4) {
6 if (r >= a[1]) r -= a[0];
7 else r *= 3;
8 r += v[i] - k * i;
9 }

10 return r;
11 }

Desirable adjustments
• Restriction: our validator cannot anticipate potentially

trapping instructions (e.g. load a[1])
• Extension: the original algorithms would be unable to

reduce nested sequences

leo.gourdin@univ-grenoble-alpes.fr 13/30

Optimizing candidates (1/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Candidates treated topologically
1st candidate: the load of a[0]

Restriction for potentially trapping instruction
As loads may trap, LCT ensures two important conditions:

1 a previous occurrence exists

2 the previous occurrence is available on every path leading
to the target redundancy

Extension for nested sequences
1 Introduction of fresh pseudoregister
2 Local substitution of pseudoregisters

3 Insertion of a move at block exits
this move is then removed by dead code elimination if useless

leo.gourdin@univ-grenoble-alpes.fr 14/30

Optimizing candidates (1/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Candidates treated topologically
1st candidate: the load of a[0]

Restriction for potentially trapping instruction
As loads may trap, LCT ensures two important conditions:

1 a previous occurrence exists

2 the previous occurrence is available on every path leading
to the target redundancy

Extension for nested sequences
1 Introduction of fresh pseudoregister
2 Local substitution of pseudoregisters

3 Insertion of a move at block exits
this move is then removed by dead code elimination if useless

leo.gourdin@univ-grenoble-alpes.fr 14/30

Optimizing candidates (1/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 Candidates treated topologically
1st candidate: the load of a[0]

Restriction for potentially trapping instruction
As loads may trap, LCT ensures two important conditions:

1 a previous occurrence exists

2 the previous occurrence is available on every path leading
to the target redundancy

Extension for nested sequences
1 Introduction of fresh pseudoregister
2 Local substitution of pseudoregisters

3 Insertion of a move at block exits
this move is then removed by dead code elimination if useless

leo.gourdin@univ-grenoble-alpes.fr 14/30

Optimizing candidates (2/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8

• Redundant load of a[0]
eliminated

• Load of immediate constant
3f anticipated

• Array addressing sequence
for v[i] reduced
with compensation
i << 3 = 4× 8 = 32

• Multiplication i * k
reduced with compensation
i × k = 4× 7 = 28

Gain ∼ 8 cycles/iteration on
U74 RISC-V!

(49 to 41 cycles, 16% reduction)

leo.gourdin@univ-grenoble-alpes.fr 15/30

Optimizing candidates (2/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 • Redundant load of a[0]
eliminated

• Load of immediate constant
3f anticipated

• Array addressing sequence
for v[i] reduced
with compensation
i << 3 = 4× 8 = 32

• Multiplication i * k
reduced with compensation
i × k = 4× 7 = 28

Gain ∼ 8 cycles/iteration on
U74 RISC-V!

(49 to 41 cycles, 16% reduction)

leo.gourdin@univ-grenoble-alpes.fr 15/30

Optimizing candidates (2/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 • Redundant load of a[0]
eliminated

• Load of immediate constant
3f anticipated

• Array addressing sequence
for v[i] reduced
with compensation
i << 3 = 4× 8 = 32

• Multiplication i * k
reduced with compensation
i × k = 4× 7 = 28

Gain ∼ 8 cycles/iteration on
U74 RISC-V!

(49 to 41 cycles, 16% reduction)

leo.gourdin@univ-grenoble-alpes.fr 15/30

Optimizing candidates (2/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 • Redundant load of a[0]
eliminated

• Load of immediate constant
3f anticipated

• Array addressing sequence
for v[i] reduced
with compensation
i << 3 = 4× 8 = 32

• Multiplication i * k
reduced with compensation
i × k = 4× 7 = 28

Gain ∼ 8 cycles/iteration on
U74 RISC-V!

(49 to 41 cycles, 16% reduction)

leo.gourdin@univ-grenoble-alpes.fr 15/30

Optimizing candidates (2/2)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 • Redundant load of a[0]
eliminated

• Load of immediate constant
3f anticipated

• Array addressing sequence
for v[i] reduced
with compensation
i << 3 = 4× 8 = 32

• Multiplication i * k
reduced with compensation
i × k = 4× 7 = 28

Gain ∼ 8 cycles/iteration on
U74 RISC-V!

(49 to 41 cycles, 16% reduction)
leo.gourdin@univ-grenoble-alpes.fr 15/30

Quick summary on Lazy Code Transformations

• For potentially trapping instructions (e.g. loads + arch specific operations);
we adapted Lazy Code Motion to restrict it with stronger conditions

• To support instruction sequences;
we proposed a rewriting procedure by substitution of fresh variables

• To generalize Lazy Strength Reduction on basic blocks;
we had to adapt data-flow equations of [Knoop et al. 1993]

• Lastly, LCT features an invariant inference procedure reusing existing analyses

• Now, two questions arise:

1 How to defensively validate LCT by Symbolic Execution + Invariants?

2 How can we eliminate non-available loads like a[1] in the example?

leo.gourdin@univ-grenoble-alpes.fr 16/30

Quick summary on Lazy Code Transformations

• For potentially trapping instructions (e.g. loads + arch specific operations);
we adapted Lazy Code Motion to restrict it with stronger conditions

• To support instruction sequences;
we proposed a rewriting procedure by substitution of fresh variables

• To generalize Lazy Strength Reduction on basic blocks;
we had to adapt data-flow equations of [Knoop et al. 1993]

• Lastly, LCT features an invariant inference procedure reusing existing analyses

• Now, two questions arise:

1 How to defensively validate LCT by Symbolic Execution + Invariants?

2 How can we eliminate non-available loads like a[1] in the example?

leo.gourdin@univ-grenoble-alpes.fr 16/30

Quick summary on Lazy Code Transformations

• For potentially trapping instructions (e.g. loads + arch specific operations);
we adapted Lazy Code Motion to restrict it with stronger conditions

• To support instruction sequences;
we proposed a rewriting procedure by substitution of fresh variables

• To generalize Lazy Strength Reduction on basic blocks;
we had to adapt data-flow equations of [Knoop et al. 1993]

• Lastly, LCT features an invariant inference procedure reusing existing analyses

• Now, two questions arise:

1 How to defensively validate LCT by Symbolic Execution + Invariants?

2 How can we eliminate non-available loads like a[1] in the example?

leo.gourdin@univ-grenoble-alpes.fr 16/30

Quick summary on Lazy Code Transformations

• For potentially trapping instructions (e.g. loads + arch specific operations);
we adapted Lazy Code Motion to restrict it with stronger conditions

• To support instruction sequences;
we proposed a rewriting procedure by substitution of fresh variables

• To generalize Lazy Strength Reduction on basic blocks;
we had to adapt data-flow equations of [Knoop et al. 1993]

• Lastly, LCT features an invariant inference procedure reusing existing analyses

• Now, two questions arise:

1 How to defensively validate LCT by Symbolic Execution + Invariants?

2 How can we eliminate non-available loads like a[1] in the example?

leo.gourdin@univ-grenoble-alpes.fr 16/30

Block Transfer Language & Blockstep semantics

Partitioning the code into loop-free blocks (with a single entry point from the outside):
• Avoids loops in symbolic execution
• Allows for block scoped optimizations (e.g. instruction scheduling)
• Stays compatible with (basic) block based algorithms

Block Transfer Language: Control flow graph of syntactically defined blocks

Blockstep , execution from the entry point to one exit point (at most one non-silent event)

To relate the BTL blockstep semantics with the RTL smallstep semantics,
we want “local” blockstep simulations to ensure a “global” simulation!

It suffices that blockstep semantics bisimulates the standard smallstep semantics.

leo.gourdin@univ-grenoble-alpes.fr 17/30

Block Transfer Language & Blockstep semantics

Partitioning the code into loop-free blocks (with a single entry point from the outside):
• Avoids loops in symbolic execution
• Allows for block scoped optimizations (e.g. instruction scheduling)
• Stays compatible with (basic) block based algorithms

Block Transfer Language: Control flow graph of syntactically defined blocks

Blockstep , execution from the entry point to one exit point (at most one non-silent event)

To relate the BTL blockstep semantics with the RTL smallstep semantics,
we want “local” blockstep simulations to ensure a “global” simulation!

It suffices that blockstep semantics bisimulates the standard smallstep semantics.

leo.gourdin@univ-grenoble-alpes.fr 17/30

Block Transfer Language & Blockstep semantics

Partitioning the code into loop-free blocks (with a single entry point from the outside):
• Avoids loops in symbolic execution
• Allows for block scoped optimizations (e.g. instruction scheduling)
• Stays compatible with (basic) block based algorithms

Block Transfer Language: Control flow graph of syntactically defined blocks

Blockstep , execution from the entry point to one exit point (at most one non-silent event)

To relate the BTL blockstep semantics with the RTL smallstep semantics,
we want “local” blockstep simulations to ensure a “global” simulation!

It suffices that blockstep semantics bisimulates the standard smallstep semantics.

leo.gourdin@univ-grenoble-alpes.fr 17/30

Principle of symbolic execution
[King 1976; Samet 1976]

Control flow graph of blocks:

a

b

c d

Oracle
→

a′

b′

c ′ d ′

For each pair of block (BS ,BT) in [(a, a′), (b, b′), ...],
compare symbolic states (δS , δT)
from their symbolic execution with ξ : block → δ.

With ξ(BS) = δS and ξ(BT) = δT ,
does δS ≡ δT hold?

In CompCert: Formally verified superblock scheduling [Six et al. 2022]
Validated by Symbolic Execution (SE), but limited to superblock scope;
→ no support for intra-procedural transformations

Advantages: generic validation method + scales well + supports normalized rewrites

leo.gourdin@univ-grenoble-alpes.fr 18/30

Principle of symbolic execution
[King 1976; Samet 1976]

Control flow graph of blocks:

a

b

c d

Oracle
→

a′

b′

c ′ d ′

For each pair of block (BS ,BT) in [(a, a′), (b, b′), ...],
compare symbolic states (δS , δT)
from their symbolic execution with ξ : block → δ.

With ξ(BS) = δS and ξ(BT) = δT ,
does δS ≡ δT hold?

In CompCert: Formally verified superblock scheduling [Six et al. 2022]
Validated by Symbolic Execution (SE), but limited to superblock scope;
→ no support for intra-procedural transformations

Advantages: generic validation method + scales well + supports normalized rewrites

leo.gourdin@univ-grenoble-alpes.fr 18/30

Principle of symbolic execution
[King 1976; Samet 1976]

Control flow graph of blocks:

a

b

c d

Oracle
→

a′

b′

c ′ d ′

For each pair of block (BS ,BT) in [(a, a′), (b, b′), ...],
compare symbolic states (δS , δT)
from their symbolic execution with ξ : block → δ.

With ξ(BS) = δS and ξ(BT) = δT ,
does δS ≡ δT hold?

In CompCert: Formally verified superblock scheduling [Six et al. 2022]
Validated by Symbolic Execution (SE), but limited to superblock scope;
→ no support for intra-procedural transformations

Advantages: generic validation method + scales well + supports normalized rewrites

leo.gourdin@univ-grenoble-alpes.fr 18/30

Principle of symbolic execution
[King 1976; Samet 1976]

Control flow graph of blocks:

a

b

c d

Oracle
→

a′

b′

c ′ d ′

For each pair of block (BS ,BT) in [(a, a′), (b, b′), ...],
compare symbolic states (δS , δT)
from their symbolic execution with ξ : block → δ.

With ξ(BS) = δS and ξ(BT) = δT ,
does δS ≡ δT hold?

In CompCert: Formally verified superblock scheduling [Six et al. 2022]
Validated by Symbolic Execution (SE), but limited to superblock scope;
→ no support for intra-procedural transformations

Advantages: generic validation method + scales well + supports normalized rewrites

leo.gourdin@univ-grenoble-alpes.fr 18/30

Intra-Block simulation: basic block example

Assume a proven rewriting rule ∀x , x × 2 = x + x .

(B1) r3 := r1 + r2;

r3 := r3 × 2;

r4 := load[m, r3];

r4 := r2 × r2;

(B2) r4 := r2 × r2;

r3 := r1 + r2;

r3 := r3 + r3;

Both B1 and B2 lead to the same parallel assignment (of live registers):
r3 := (r1 + r2) + (r1 + r2) ‖ r4 := r2 × r2

B2 simulates B1, but B1 simulates B2 iff “OK (load[m, r3])”
→ B1 ∼ B2 precondition is stronger as we must not add any potential trap

However… term duplication makes structural comparison exponential (e.g. “r1 + r2”)!
Solution of [Six et al. 2020]: hash-consing, i.e. memoize subterms + pointer equalities

leo.gourdin@univ-grenoble-alpes.fr 19/30

Intra-Block simulation: basic block example

Assume a proven rewriting rule ∀x , x × 2 = x + x .

(B1) r3 := r1 + r2;

r3 := r3 × 2;

r4 := load[m, r3];

r4 := r2 × r2;

(B2) r4 := r2 × r2;

r3 := r1 + r2;

r3 := r3 + r3;

Both B1 and B2 lead to the same parallel assignment (of live registers):
r3 := (r1 + r2) + (r1 + r2) ‖ r4 := r2 × r2

B2 simulates B1, but B1 simulates B2 iff “OK (load[m, r3])”
→ B1 ∼ B2 precondition is stronger as we must not add any potential trap

However… term duplication makes structural comparison exponential (e.g. “r1 + r2”)!
Solution of [Six et al. 2020]: hash-consing, i.e. memoize subterms + pointer equalities

leo.gourdin@univ-grenoble-alpes.fr 19/30

Intra-Block simulation: basic block example

Assume a proven rewriting rule ∀x , x × 2 = x + x .

(B1) r3 := r1 + r2;

r3 := r3 × 2;

r4 := load[m, r3];

r4 := r2 × r2;

(B2) r4 := r2 × r2;

r3 := r1 + r2;

r3 := r3 + r3;

Both B1 and B2 lead to the same parallel assignment (of live registers):
r3 := (r1 + r2) + (r1 + r2) ‖ r4 := r2 × r2

B2 simulates B1, but B1 simulates B2 iff “OK (load[m, r3])”
→ B1 ∼ B2 precondition is stronger as we must not add any potential trap

However… term duplication makes structural comparison exponential (e.g. “r1 + r2”)!
Solution of [Six et al. 2020]: hash-consing, i.e. memoize subterms + pointer equalities

leo.gourdin@univ-grenoble-alpes.fr 19/30

Intra-Block simulation: basic block example

Assume a proven rewriting rule ∀x , x × 2 = x + x .

(B1) r3 := r1 + r2;

r3 := r3 × 2;

r4 := load[m, r3];

r4 := r2 × r2;

(B2) r4 := r2 × r2;

r3 := r1 + r2;

r3 := r3 + r3;

Both B1 and B2 lead to the same parallel assignment (of live registers):
r3 := (r1 + r2) + (r1 + r2) ‖ r4 := r2 × r2

B2 simulates B1, but B1 simulates B2 iff “OK (load[m, r3])”
→ B1 ∼ B2 precondition is stronger as we must not add any potential trap

However… term duplication makes structural comparison exponential (e.g. “r1 + r2”)!
Solution of [Six et al. 2020]: hash-consing, i.e. memoize subterms + pointer equalities

leo.gourdin@univ-grenoble-alpes.fr 19/30

Intra-Block simulation: basic block example

Assume a proven rewriting rule ∀x , x × 2 = x + x .

(B1) r3 := r1 + r2;

r3 := r3 × 2;

r4 := load[m, r3];

r4 := r2 × r2;

(B2) r4 := r2 × r2;

r3 := r1 + r2;

r3 := r3 + r3;

Both B1 and B2 lead to the same parallel assignment (of live registers):
r3 := (r1 + r2) + (r1 + r2) ‖ r4 := r2 × r2

B2 simulates B1, but B1 simulates B2 iff “OK (load[m, r3])”
→ B1 ∼ B2 precondition is stronger as we must not add any potential trap

However… term duplication makes structural comparison exponential (e.g. “r1 + r2”)!
Solution of [Six et al. 2020]: hash-consing, i.e. memoize subterms + pointer equalities

leo.gourdin@univ-grenoble-alpes.fr 19/30

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic)
blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: δ , (µ, ~σ,R) (memory, precondition, registers state)

Memory µ ::= Sinit | Sstore(µold , chk, addr , ~σ, src)

Values σ ::= Sinput(r) | Sop(op, ~σ) | Sload(µ, trap, chk, addr , ~σ) | ...

Regset R , r 7→ σ a finite map “register 7→ terms” (parallel assignment)

According to the block shape, the resulting state is:

• a single triplet for basic-blocks;

• a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

leo.gourdin@univ-grenoble-alpes.fr 20/30

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic)
blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: δ , (µ, ~σ,R) (memory, precondition, registers state)

Memory µ ::= Sinit | Sstore(µold , chk, addr , ~σ, src)

Values σ ::= Sinput(r) | Sop(op, ~σ) | Sload(µ, trap, chk, addr , ~σ) | ...

Regset R , r 7→ σ a finite map “register 7→ terms” (parallel assignment)

According to the block shape, the resulting state is:

• a single triplet for basic-blocks;
• a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

leo.gourdin@univ-grenoble-alpes.fr 20/30

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic)
blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: δ , (µ, ~σ,R) (memory, precondition, registers state)

Memory µ ::= Sinit | Sstore(µold , chk, addr , ~σ, src)

Values σ ::= Sinput(r) | Sop(op, ~σ) | Sload(µ, trap, chk, addr , ~σ) | ...

Regset R , r 7→ σ a finite map “register 7→ terms” (parallel assignment)

According to the block shape, the resulting state is:

• a single triplet for basic-blocks;
• a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

leo.gourdin@univ-grenoble-alpes.fr 20/30

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic)
blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: δ , (µ, ~σ,R) (memory, precondition, registers state)

Memory µ ::= Sinit | Sstore(µold , chk, addr , ~σ, src)

Values σ ::= Sinput(r) | Sop(op, ~σ) | Sload(µ, trap, chk, addr , ~σ) | ...

Regset R , r 7→ σ a finite map “register 7→ terms” (parallel assignment)

According to the block shape, the resulting state is:

• a single triplet for basic-blocks;
• a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

leo.gourdin@univ-grenoble-alpes.fr 20/30

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic)
blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: δ , (µ, ~σ,R) (memory, precondition, registers state)

Memory µ ::= Sinit | Sstore(µold , chk, addr , ~σ, src)

Values σ ::= Sinput(r) | Sop(op, ~σ) | Sload(µ, trap, chk, addr , ~σ) | ...

Regset R , r 7→ σ a finite map “register 7→ terms” (parallel assignment)

According to the block shape, the resulting state is:
• a single triplet for basic-blocks;

• a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

leo.gourdin@univ-grenoble-alpes.fr 20/30

Aggregated block-by-block simulations, in practice

Block shapes:: basic-blocks (1 entry, 1 exit), superblocks (1 entry, side-exits), extended (basic)
blocks (trees without internal joins), loop-free blocks (directed acyclic graphs)

Symbolic states: δ , (µ, ~σ,R) (memory, precondition, registers state)

Memory µ ::= Sinit | Sstore(µold , chk, addr , ~σ, src)

Values σ ::= Sinput(r) | Sop(op, ~σ) | Sload(µ, trap, chk, addr , ~σ) | ...

Regset R , r 7→ σ a finite map “register 7→ terms” (parallel assignment)

According to the block shape, the resulting state is:
• a single triplet for basic-blocks;
• a Binary Decision Diagram (BDD) with triplets on leafs (=exits) in the general case.

leo.gourdin@univ-grenoble-alpes.fr 20/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)
→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)
→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)
→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)
→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)

→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)
→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)
→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)
→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)
→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)

→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)
→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)
→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

The “basic” simulation test

Independently, for each pair of blocks,

Comparing symbolic states

Let δ1 = (µ1, ~σ1,R1) and δ2 = (µ2, ~σ2,R2), δ2 simulates δ1 iff:

δ1 � δ2 , µ1 = µ2 ∧ ~σ2 ⊆ ~σ1 ∧R1 ⊆ R2

→ δ1 is at least as trapping as δ2 (we do not add any potential trap)
→ δ2 may define fresh variables

Limitation: cannot anticipate potentially trapping instructions (e.g. loads)
→ solution: a prior loop-peeling pass.

Main problematic: extending the approach for inter-block (intra-procedural) transformations.

leo.gourdin@univ-grenoble-alpes.fr 21/30

Generalizing this principle for inter-block transformations (1/2)

Idea:

1 Oracles infer and add invariant annotations to the target program

2 Symbolic simulation defensively validate invariants

→ information propagation + consistency at global level

High-level overview
Each block is annotated with two types of invariants:

1 Gluing invariant (G): assigns target variables by expressions of source variables

2 History invariant (H): assigns source variables by expressions of source variables

Each invariant is composed of:
• A sequence of assignments
• A set of live variables in the block (i.e. as trivial assignments “x:=x”)

leo.gourdin@univ-grenoble-alpes.fr 22/30

Generalizing this principle for inter-block transformations (1/2)

Idea:

1 Oracles infer and add invariant annotations to the target program

2 Symbolic simulation defensively validate invariants

→ information propagation + consistency at global level

High-level overview
Each block is annotated with two types of invariants:

1 Gluing invariant (G): assigns target variables by expressions of source variables

2 History invariant (H): assigns source variables by expressions of source variables

Each invariant is composed of:
• A sequence of assignments
• A set of live variables in the block (i.e. as trivial assignments “x:=x”)

leo.gourdin@univ-grenoble-alpes.fr 22/30

Generalizing this principle for inter-block transformations (1/2)

Idea:

1 Oracles infer and add invariant annotations to the target program

2 Symbolic simulation defensively validate invariants

→ information propagation + consistency at global level

High-level overview
Each block is annotated with two types of invariants:

1 Gluing invariant (G): assigns target variables by expressions of source variables

2 History invariant (H): assigns source variables by expressions of source variables

Each invariant is composed of:
• A sequence of assignments
• A set of live variables in the block (i.e. as trivial assignments “x:=x”)

leo.gourdin@univ-grenoble-alpes.fr 22/30

Generalizing this principle for inter-block transformations (2/2)

• ε , empty symbolic state

• VS , VT : sets of source/target variables; σ[V]: symbolic expressions of variables of V
• I, J subscripts: invariant of the current/successors blocks

In [Six et al. 2022],
no relation between local
simulations:
no anticipation possible!

εs0

δs1

εt0

δt1

S
�

≡

T

Anticipation of
(non-trapping) computations:
Gluing Invariants
(G: VT 7→ σ[VS]).

εs0/εt0

δs1

δt1

δs2 � δt2

S
GJ

GI

T

Sharing a common execution
past: History Invariants
(H: VS 7→ σ[VS]).

ε δs0/δt0

δs1

δt1

δs2 � δt2

HI

S

HJ

δ′s1 � δs1

GJ

GI

T

Still using the “�” comparison on the target’s output liveness (e.g. “�dom(GJ)”)

leo.gourdin@univ-grenoble-alpes.fr 23/30

Generalizing this principle for inter-block transformations (2/2)

• ε , empty symbolic state
• VS , VT : sets of source/target variables; σ[V]: symbolic expressions of variables of V
• I, J subscripts: invariant of the current/successors blocks

In [Six et al. 2022],
no relation between local
simulations:
no anticipation possible!

εs0

δs1

εt0

δt1

S
�

≡

T

Anticipation of
(non-trapping) computations:
Gluing Invariants
(G: VT 7→ σ[VS]).

εs0/εt0

δs1

δt1

δs2 � δt2

S
GJ

GI

T

Sharing a common execution
past: History Invariants
(H: VS 7→ σ[VS]).

ε δs0/δt0

δs1

δt1

δs2 � δt2

HI

S

HJ

δ′s1 � δs1

GJ

GI

T

Still using the “�” comparison on the target’s output liveness (e.g. “�dom(GJ)”)
leo.gourdin@univ-grenoble-alpes.fr 23/30

Generalizing this principle for inter-block transformations (2/2)

• ε , empty symbolic state
• VS , VT : sets of source/target variables; σ[V]: symbolic expressions of variables of V
• I, J subscripts: invariant of the current/successors blocks

In [Six et al. 2022],
no relation between local
simulations:
no anticipation possible!

εs0

δs1

εt0

δt1

S
�

≡

T

Anticipation of
(non-trapping) computations:
Gluing Invariants
(G: VT 7→ σ[VS]).

εs0/εt0

δs1

δt1

δs2 � δt2

S
GJ

GI

T

Sharing a common execution
past: History Invariants
(H: VS 7→ σ[VS]).

ε δs0/δt0

δs1

δt1

δs2 � δt2

HI

S

HJ

δ′s1 � δs1

GJ

GI

T

Still using the “�” comparison on the target’s output liveness (e.g. “�dom(GJ)”)
leo.gourdin@univ-grenoble-alpes.fr 23/30

Validating Lazy Code Transformations on our example (1/3)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8

Entry with live variables only (block 8):
G: [ALIVE={a, v, n}]

Old synthetic node (block 7):
G: [ALIVE={a, v, n, k, i, r};

x18:=float64[a+0]]
H: [k:=7]

For all loop blocks (in {2, 3, 4, 5, 6}):
G: [ALIVE={a, n, i, r};

x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

H: [k:=7]

Exit (block 1):
G: [ALIVE={r}]

leo.gourdin@univ-grenoble-alpes.fr 24/30

Validating Lazy Code Transformations on our example (1/3)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 Entry with live variables only (block 8):
G: [ALIVE={a, v, n}]

Old synthetic node (block 7):
G: [ALIVE={a, v, n, k, i, r};

x18:=float64[a+0]]
H: [k:=7]

For all loop blocks (in {2, 3, 4, 5, 6}):
G: [ALIVE={a, n, i, r};

x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

H: [k:=7]

Exit (block 1):
G: [ALIVE={r}]

leo.gourdin@univ-grenoble-alpes.fr 24/30

Validating Lazy Code Transformations on our example (1/3)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 Entry with live variables only (block 8):
G: [ALIVE={a, v, n}]

Old synthetic node (block 7):
G: [ALIVE={a, v, n, k, i, r};

x18:=float64[a+0]]
H: [k:=7]

For all loop blocks (in {2, 3, 4, 5, 6}):
G: [ALIVE={a, n, i, r};

x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

H: [k:=7]

Exit (block 1):
G: [ALIVE={r}]

leo.gourdin@univ-grenoble-alpes.fr 24/30

Validating Lazy Code Transformations on our example (1/3)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 Entry with live variables only (block 8):
G: [ALIVE={a, v, n}]

Old synthetic node (block 7):
G: [ALIVE={a, v, n, k, i, r};

x18:=float64[a+0]]
H: [k:=7]

For all loop blocks (in {2, 3, 4, 5, 6}):
G: [ALIVE={a, n, i, r};

x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

H: [k:=7]

Exit (block 1):
G: [ALIVE={r}]

leo.gourdin@univ-grenoble-alpes.fr 24/30

Validating Lazy Code Transformations on our example (1/3)

k = 7; i = 0; r = 2f
x17 = float64[a+0]
x17 <f r ?

goto

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

x15 = 3f
r = r *f x15

x14 = float64[a+0]
r = r -f x14

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

ret r1

2

3 4

5

6

7

8 k = 7; i = 0; r = 2f
x18 = float64[a+0]
x18 <f r ?

x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

i >=ls n ?

x16 = float64[a+8]
r >=f x16 ?

r = r *f x19r = r -f x18

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

ret r1

2

3 4

5

6

7

8 Entry with live variables only (block 8):
G: [ALIVE={a, v, n}]

Old synthetic node (block 7):
G: [ALIVE={a, v, n, k, i, r};

x18:=float64[a+0]]
H: [k:=7]

For all loop blocks (in {2, 3, 4, 5, 6}):
G: [ALIVE={a, n, i, r};

x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

H: [k:=7]

Exit (block 1):
G: [ALIVE={r}]

leo.gourdin@univ-grenoble-alpes.fr 24/30

Validating Lazy Code Transformations on our example (2/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 1: synthetic node 7 (anticipate reduced operations)

goto
x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

HI: [k:=7]

Ex
ec

ut
io

n
or

de
r

7

GI: [ALIVE={a, v, n, k, i, r};
x18:=float64[a+0]]

GJ: [ALIVE={a, n, i, r};
x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

(1) µ1 = µ2 = Sinit (2) ~σ2 = ~σ1 = float64[a + 0]

(3) R1 = R2 = a := a ‖ n := n ‖ i := i ‖ r := r ‖
x18 := float64[a + 0] ‖ x19 := 3f ‖ x21 := 8 · i + v ‖ x22 := 7 · i

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 25/30

Validating Lazy Code Transformations on our example (2/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 1: synthetic node 7 (anticipate reduced operations)

goto
x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

HI: [k:=7]
Ex

ec
ut

io
n

or
de

r

7

GI: [ALIVE={a, v, n, k, i, r};
x18:=float64[a+0]]

GJ: [ALIVE={a, n, i, r};
x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

(1) µ1 = µ2 = Sinit (2) ~σ2 = ~σ1 = float64[a + 0]

(3) R1 = R2 = a := a ‖ n := n ‖ i := i ‖ r := r ‖
x18 := float64[a + 0] ‖ x19 := 3f ‖ x21 := 8 · i + v ‖ x22 := 7 · i

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 25/30

Validating Lazy Code Transformations on our example (2/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 1: synthetic node 7 (anticipate reduced operations)

goto
x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

HI: [k:=7]
Ex

ec
ut

io
n

or
de

r

7

GI: [ALIVE={a, v, n, k, i, r};
x18:=float64[a+0]]

GJ: [ALIVE={a, n, i, r};
x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

(1) µ1 = µ2 = Sinit (2) ~σ2 = ~σ1 = float64[a + 0]

(3) R1 = R2 = a := a ‖ n := n ‖ i := i ‖ r := r ‖
x18 := float64[a + 0] ‖ x19 := 3f ‖ x21 := 8 · i + v ‖ x22 := 7 · i

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 25/30

Validating Lazy Code Transformations on our example (2/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 1: synthetic node 7 (anticipate reduced operations)

goto
x19 = 3f
x20 = i <<l 3
x21 = v +l x20
x22 = i *l k

HI: [k:=7]
Ex

ec
ut

io
n

or
de

r

7

GI: [ALIVE={a, v, n, k, i, r};
x18:=float64[a+0]]

GJ: [ALIVE={a, n, i, r};
x18:=float64[a+0]; x19:=3f;
AUX/x20:=i <<l 3;
x21:=v +l x20; x22:=i *l k]

(1) µ1 = µ2 = Sinit (2) ~σ2 = ~σ1 = float64[a + 0]

(3) R1 = R2 = a := a ‖ n := n ‖ i := i ‖ r := r ‖
x18 := float64[a + 0] ‖ x19 := 3f ‖ x21 := 8 · i + v ‖ x22 := 7 · i

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 25/30

Validating Lazy Code Transformations on our example (3/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 2: loop block 2 (remember reduced operations)

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

HI: [k:=7]

2

Ex
ec

ut
io

n
or

de
r GI: [ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f;

AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]

GJ = GI

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 26/30

Validating Lazy Code Transformations on our example (3/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 2: loop block 2 (remember reduced operations)

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

HI: [k:=7]

2

Ex
ec

ut
io

n
or

de
r GI: [ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f;

AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]

GJ = GI

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 26/30

Validating Lazy Code Transformations on our example (3/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 2: loop block 2 (remember reduced operations)

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

HI: [k:=7]

2

Ex
ec

ut
io

n
or

de
r GI: [ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f;

AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]

GJ = GI

(1) µ1 = µ2 = Sinit (2) ~σ2 = ~σ1 = float64[a + 0]; int64[8 · i + v]

(3) R1 = R2 = a := a ‖ n := n ‖ i = i + 4 ‖ x18 := float64[a + 0] ‖ x19 := 3f ‖
x21 := 8·i+v+32 ‖ x22 := 7·i+28 ‖ r := r+fofl(int64[8·i+v]−7·i)

=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 26/30

Validating Lazy Code Transformations on our example (3/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 2: loop block 2 (remember reduced operations)

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

HI: [k:=7]

2

Ex
ec

ut
io

n
or

de
r GI: [ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f;

AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]

GJ = GI

(1) µ1 = µ2 = Sinit (2) ~σ2 = ~σ1 = float64[a + 0]; int64[8 · i + v]
(3) R1 = R2 = a := a ‖ n := n ‖ i = i + 4 ‖ x18 := float64[a + 0] ‖ x19 := 3f ‖

x21 := 8·i+v+32 ‖ x22 := 7·i+28 ‖ r := r+fofl(int64[8·i+v]−7·i)
=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 26/30

Validating Lazy Code Transformations on our example (3/3)

GI=input / GJ=output, we have:
1 apply H (same for input/output here);

2 compare with (S . GJ) �dom(GJ) (GI . T)

Example 2: loop block 2 (remember reduced operations)

x13 = i <<l 3
x12 = v +l x13
x10 = int64[x12+0]
x11 = i *l k
x9 = x10 -l x11
x8 = floatoflong(x9)
r = r +f x8
i = i +l 4

x10 = int64[x21+0]
x9 = x10 -l x22
x8 = floatoflong(x9)
r = r +f x8
x21 = x21 +l 32
x22 = x22 +l 28
i = i +l 4

HI: [k:=7]

2

Ex
ec

ut
io

n
or

de
r GI: [ALIVE={a, n, i, r}; x18:=float64[a+0]; x19:=3f;

AUX/x20:=i <<l 3; x21:=v +l x20; x22:=i *l k]

GJ = GI

Some symbolic values were rewritten to a normal form, e.g.
x21 := 8 · i + v + 32 ‖ x22 := 7 · i + 28

…using a restricted affine theory.
=⇒ δ1 � δ2

leo.gourdin@univ-grenoble-alpes.fr 26/30

A step back: summary on Block Transfer Language & CFG morphisms

RTL RTL RTLBTL with basic-blocks BTL with superblocks

• Code expansions†

• Lazy Code Transformations†

• Store Motion

• Liveness analysis
• Simple Dead-Code
Elimination†

• Renaming & If-lifting
• Prepass scheduling

† = my contributions

a1

a2

a3

b

c1

c2

d1

d2

RTL CFG

A

B

C D

BTL CFG

Other contribution: a control flow graph morphism validator
Parametrized according to the type of morphism, used to validate:

• the RTL↔BTL translation
• code duplication (loop unrollings) & factorization (DFA minimization)
• the insertion of synthetic nodes for data-flow analyses

leo.gourdin@univ-grenoble-alpes.fr 27/30

A step back: summary on Block Transfer Language & CFG morphisms

RTL RTL RTLBTL with basic-blocks BTL with superblocks

• Code expansions†

• Lazy Code Transformations†

• Store Motion

• Liveness analysis
• Simple Dead-Code
Elimination†

• Renaming & If-lifting
• Prepass scheduling

† = my contributions

a1

a2

a3

b

c1

c2

d1

d2

RTL CFG

A

B

C D

BTL CFG

Other contribution: a control flow graph morphism validator
Parametrized according to the type of morphism, used to validate:

• the RTL↔BTL translation
• code duplication (loop unrollings) & factorization (DFA minimization)
• the insertion of synthetic nodes for data-flow analyses

leo.gourdin@univ-grenoble-alpes.fr 27/30

A step back: summary on Block Transfer Language & CFG morphisms

RTL RTL RTLBTL with basic-blocks BTL with superblocks

• Code expansions†

• Lazy Code Transformations†

• Store Motion

• Liveness analysis
• Simple Dead-Code
Elimination†

• Renaming & If-lifting
• Prepass scheduling

† = my contributions

a1

a2

a3

b

c1

c2

d1

d2

RTL CFG

A

B

C D

BTL CFG

Other contribution: a control flow graph morphism validator
Parametrized according to the type of morphism, used to validate:
• the RTL↔BTL translation

• code duplication (loop unrollings) & factorization (DFA minimization)
• the insertion of synthetic nodes for data-flow analyses

leo.gourdin@univ-grenoble-alpes.fr 27/30

A step back: summary on Block Transfer Language & CFG morphisms

RTL RTL RTLBTL with basic-blocks BTL with superblocks

• Code expansions†

• Lazy Code Transformations†

• Store Motion

• Liveness analysis
• Simple Dead-Code
Elimination†

• Renaming & If-lifting
• Prepass scheduling

† = my contributions

a1

a2

a3

b

c1

c2

d1

d2

RTL CFG

A

B

C D

BTL CFG

Other contribution: a control flow graph morphism validator
Parametrized according to the type of morphism, used to validate:
• the RTL↔BTL translation
• code duplication (loop unrollings) & factorization (DFA minimization)
• the insertion of synthetic nodes for data-flow analyses

leo.gourdin@univ-grenoble-alpes.fr 27/30

Experimental evaluation

Compile times that scale
(thanks to formally verified hash-consing)

Benchmarks: LLVMtests, MiBench,
PolyBench, TACLeBench, Verimag

Closing the gap with“GCC -O1”

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

LLVMtests MiBench PolyBench TacleBench Verimag

Percentage gain in execution time, higher is better

GCC-01
Chamois-CompCert

Comparing w.r.t. Official CompCert over five test suites

Measured on a RISC-V U74 Core
(SiFive HiFive Unmatched board)

Median gain w.r.t. Official CompCert
with relative standard deviation ≤ 2%

leo.gourdin@univ-grenoble-alpes.fr 28/30

Experimental evaluation

Compile times that scale
(thanks to formally verified hash-consing)

Benchmarks: LLVMtests, MiBench,
PolyBench, TACLeBench, Verimag

Closing the gap with“GCC -O1”

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

LLVMtests MiBench PolyBench TacleBench Verimag

Percentage gain in execution time, higher is better

GCC-01
Chamois-CompCert

Comparing w.r.t. Official CompCert over five test suites

Measured on a RISC-V U74 Core
(SiFive HiFive Unmatched board)

Median gain w.r.t. Official CompCert
with relative standard deviation ≤ 2%

leo.gourdin@univ-grenoble-alpes.fr 28/30

Conclusion

Insights
Formally verified defensive programming helps in validating advanced compiler optimizations:

• A formally verified interpreter only does simple computations;
• Oracles generate hints that are simple for them to yield,

but that would be hard to have the validators reconstruct.
→ Defensive, hash-consed symbolic execution is an efficient way of validating a class of
intra-procedural transformations!

Future work
Can we extend this principle for security (in contrast to safety) applications?

1 To prove the insertion of security countermeasures (correctness)

2 To provide some security guarantees w.r.t. an abstract attacker model

leo.gourdin@univ-grenoble-alpes.fr 29/30

Conclusion

Insights
Formally verified defensive programming helps in validating advanced compiler optimizations:

• A formally verified interpreter only does simple computations;
• Oracles generate hints that are simple for them to yield,

but that would be hard to have the validators reconstruct.
→ Defensive, hash-consed symbolic execution is an efficient way of validating a class of
intra-procedural transformations!

Future work
Can we extend this principle for security (in contrast to safety) applications?

1 To prove the insertion of security countermeasures (correctness)

2 To provide some security guarantees w.r.t. an abstract attacker model

leo.gourdin@univ-grenoble-alpes.fr 29/30

Conclusion

Insights
Formally verified defensive programming helps in validating advanced compiler optimizations:

• A formally verified interpreter only does simple computations;
• Oracles generate hints that are simple for them to yield,

but that would be hard to have the validators reconstruct.
→ Defensive, hash-consed symbolic execution is an efficient way of validating a class of
intra-procedural transformations!

Future work
Can we extend this principle for security (in contrast to safety) applications?

1 To prove the insertion of security countermeasures (correctness)

2 To provide some security guarantees w.r.t. an abstract attacker model

leo.gourdin@univ-grenoble-alpes.fr 29/30

Conclusion

Insights
Formally verified defensive programming helps in validating advanced compiler optimizations:

• A formally verified interpreter only does simple computations;
• Oracles generate hints that are simple for them to yield,

but that would be hard to have the validators reconstruct.
→ Defensive, hash-consed symbolic execution is an efficient way of validating a class of
intra-procedural transformations!

Future work
Can we extend this principle for security (in contrast to safety) applications?

1 To prove the insertion of security countermeasures (correctness)

2 To provide some security guarantees w.r.t. an abstract attacker model

leo.gourdin@univ-grenoble-alpes.fr 29/30

Thank You! Questions?

Online code: -CompCert version at:
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

Manuscript (frozen) CompCert version at:
https://framagit.org/yukit/compcert-chamois-gl-thesis

Main publications:

• Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino. “Formally
Verified Superblock Scheduling.”, CPP 2022.

• Léo Gourdin. “Lazy Code Transformations in a Formally Verified Compiler.”, ICOOOLPS 2023.

• David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel. “Testing a Formally Verified Compiler.”,
TAP 2023.

• Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard. “Formally
Verifying Optimizations with Block Simulations.”, OOPSLA 2023.

leo.gourdin@univ-grenoble-alpes.fr 30/30

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://framagit.org/yukit/compcert-chamois-gl-thesis

Appendices

Peephole & Postpass on AArch64
If-lifting
Loop Unrollings
CompCert’s Trusted Computing Base
Safe translation validation in Coq
Hash-consing
Why on RISC-V?
BTL syntax & semantics
RISC-V macros expansions & mini-CSE
Predicates for Lazy Code Transformations
Diagrammatic proof of blockstep simulation
Development size
More benchmark results

leo.gourdin@univ-grenoble-alpes.fr 31/30

Peephole pairing load (and store) instructions on AArch64
[Gourdin 2021; Six et al. 2022]

w1 := ldr [x6, #0]
w2 := add w4, w3
w4 := ldr [x6, #4] // WAR w4
str w2, [x1, #4]
w5 := ldr [x3, #4]
w6 := add w5, w3 // RAW w5
w7 := ldr [x3, #0]

Source

w2 := add w4, w3
w1, w4 := ldp [x6, #0] // WAR w4
str w2, [x1, #4]
w7, w5 := ldp [x3, #0]
w6 := add w5, w3 // RAW w5

Target

Rewriting rule before symbolic simulation:
under guard r1 6= r2

r1, r2 := ldp[r3, #n] → r2 := r3;
r1 := ldr[r3, #n];
r2 := ldr[r2, #n + 4]

Proving the correctness of this rewriting rule is much easier
than a direct proof on the peephole optimization.

leo.gourdin@univ-grenoble-alpes.fr 32/30

Example: the finer capabilities of postpass (on AArch64)
Reordering an instruction expanded at the Asm level

1 int main(int x, int y) {
2 int z = x << 32;
3 y = y - z;
4 return x + y;
5 }

I1 orr w2, wzr, #32
I2 lsl w2, w0, w2
I3 sub w3, w1, w2
I4 add w0, w0, w3
I5 ldr x30, [sp, #8]
I6 add sp, sp, #16
I7 ret x30

Before postpass

I1 orr w2, wzr, #32
I5 ldr x30, [sp, #8]
I2 lsl w2, w0, w2
I6 add sp, sp, #16
I3 sub w3, w1, w2
I4 add w0, w0, w3
I7 ret x30

After postpass
Main difference: the load of the return address is lifted.

Latencies
LSL=2; LDR=3; others=1

Stalls info
1 w2 is not ready!

2 sp is not ready!

bad scheduling

−−−−−−−−−→
running

tim
e

EXEC1 EXEC2
I1
I2

stall1 I2
I3
I4 I5

stall2 I5
stall2 I5
I6

good scheduling
EXEC1 EXEC2
I1 I5
I2 I5
I2 I5
I6 I3
I4

8 versus 5 cycles,
3 cycles are won!

leo.gourdin@univ-grenoble-alpes.fr 33/30

Instruction Level Parallelism

Pipeline of the ARMv8 Cortex A53 Two dimensions of parallelism

vertical: several stages of computing
units

horizontal: several units at the same stage

Usually interlocked pipeline: observationnally,
assembly semantics is sequential!

(with dynamically inserted stalls)

On VLIW processors:
horizontal parallelism specified by the assembly
program
(i.e. “tiny-scope” parallelism).

leo.gourdin@univ-grenoble-alpes.fr 34/30

Certifying Peephole & Postpass by translation validation
How it works?

Asmblock
Program

PostpassScheduling
Module

Asm
Program

Error

AbstractBasicBlock
Verifiers

Peephole+Scheduler Hash Consing

B tB

B

tB

(B, tB)
OK/Error

Coq (trusted)

OCaml (untrusted)

• Adapted from [Six et al. 2020]
• Generic verifier backend, specialized Domain Specification Language
• The verifier proof is independent of the transformations

leo.gourdin@univ-grenoble-alpes.fr 35/30

Asmblock implementation & basic blocks structure

Basic block: A block with at most one branching instruction, in final position. The sequence is
only reachable at its first instruction.
Inductive basic: Type := (* basic instructions *)
Inductive control: Type := (* control-flow instructions *)
Record bblock := {

header: list label; body: list basic; exit: option control;
correct: Is_true(non_empty_body body || non_empty_exit exit)

}

State (rs,m): A tuple of a register state rs (mapping registers to values) and a memory state m
(mapping addresses to values).

The basic block is executed from
(rs0
m0

)
to

(rsn
mn

)
:(rs0

m0

) (rs1
m1

)
· · ·

(rsn−1

mn−1

) (rsn
mn

)bstep bstep bstep estep

bbstep f [b1; b2; · · · ; bn] rs0 m0

leo.gourdin@univ-grenoble-alpes.fr 36/30

A Domain Specific Language for symbolic execution of assembly code
Simulation test correctness

1 Code is translated in the generic AbstractBasicBlock DSL

2 A symbolic execution is run to compute “symbolic states”

3 Simulation is deduced from syntactical equalities on “symbolic states”

Asmblock B tb

AbstractBasicBlock · ·

Symbolic states · ·

simulated by

bisimulation

bisimulation

compilations
(block by block)

symbolic executions
with hash-consing of terms

simulated by

leo.gourdin@univ-grenoble-alpes.fr 37/30

Assembly level framework: proof effort and benefits
Overall implementation: three man·months of development.
• Machblock to Asmblock: A difficult star simulation
• Peephole/postpass proof in Asmblock: a simple lockstep simulation
• Asmblock to Asm: a plus simulation

Simulation property of the verifier :

Definition bblock_simu (lk: aarch64_linker)
(ge: Genv.t fundef unit) (f: function) (bb bb': bblock) :=
∀ rs m rs' m' t,

exec_bblock lk ge f bb rs m t rs' m' →
exec_bblock lk ge f bb' rs m t rs' m'

Bug found while implementing the verifier
• Difference between the formal specification of Asm and the “printer”
• Concerns Pfmovimmd and Pfmovimms macro-instructions
• Instruction behavior was not fully specified

leo.gourdin@univ-grenoble-alpes.fr 38/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 39/30

Interleaving of rotated & unrolled loop-bodies on Cortex A-53 (AArch64)
double sumsq(double *x, int len){

double s = 0.0; for (int i=0; i < len; i++) s += x[i]*x[i];
return s;

}

1 .L101: // DO-WHILE loop
2 ldr d2,[x0,w2,sxtw #3]
3 fmul d1, d2, d2
4 fadd d0, d0, d1 // d0 += x[w2]2

5 add w2, w2, #1
6 cmp w2, w1
7 b.ge .L100 // end body 1
8 ldr d2,[x0,w2,sxtw #3]
9 fmul d1, d2, d2

10 fadd d0, d0, d1
11 add w2, w2, #1
12 cmp w2, w1
13 b.lt .L101 // end body 2
14 .L100: // loop exit
15 // only d0 is live here

Gain of right hand-side schedule '
30% wrt the (above) source order.

.L101:
ldr d2,[x0,w2,sxtw #3]
add w2, w2, #1
cmp w2, w1
b.ge .L102
ldr d3,[x0,w2,sxtw #3]
add w2, w2, #1
fmul d1, d2, d2
cmp w2, w1
fmul d4, d3, d3
fadd d0, d0, d1
fadd d0, d0, d4
b.lt .L101
b .L100

.L102:
fmul d1, d2, d2
fadd d0, d0, d1

.L100:
leo.gourdin@univ-grenoble-alpes.fr 40/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 41/30

Validating loop-unrollings through CFG-projections

Various loop-unrollings (below)
from the source “while-do” loop on the right
A = before the loop B = loop-condition
C = loop-body D = after the loop

A

B

C D

A

B1

C

B2 D

rotate
(i.e. if-do-while)

A

B1

C1

B2

C2 D

unroll 1st iteration

A

B1

C1

B2

C2 D

unroll body

leo.gourdin@univ-grenoble-alpes.fr 42/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 43/30

The main parts of CompCert Trusted Computing Base (TCB)

• formal semantics of the CompCert C language (in Coq);

• formal semantics of the assembly languages (in Coq);

• option parsing and filename handling (in OCaml);

• preprocessor (partly external, partly in OCaml), which turns regular C into CompCert C;

• “assembly expansions” (in OCaml) dealing with “pseudo-instructions” for stack (de)allocation &
memory copy;

• formal axiomatization (in Coq) of these pseudo-instructions;

• assembly pretty-printer (in OCaml);

• compatibility of the ABI used by CompCert with other libraries (e.g. standard C library) compiled
on the system with GCC;

• external assembler and linker;

• Coq TCB (+ “purity of oracles is not used in the Coq proof”)

leo.gourdin@univ-grenoble-alpes.fr 44/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 45/30

Translation validation in Coq

Declaring a foreign function in Coq using an axiom is not totally safe:
⇒ OCaml “function” are not functions in a mathematical pov, but “relations”, as they are
nondeterministics.

Existing oracles in CompCert are declared as “pure” functions:
Example of register allocation:

Axiom regalloc: RTL.func → option LTL.func

implemented by imperative OCaml code using hash-tables.
⇒ not a real issue, as their purity is not used in the formal proof;

Successfully applied in the VPL (Verified Polyhedra Library)
[Boulmé, Fouilhé, Maréchal, Monniaux, Périn, etc’2013-2018]

And partially applied in our version of CompCert
[Boulmé, Gourdin, Fasse, Monniaux, Six’2018-2023]

leo.gourdin@univ-grenoble-alpes.fr 46/30

The Impure library

1 We rely on the Impure library [Boulmé 2021] to model OCaml foreign functions as
nondeterministic ones;

2 Based on may-return monads of [Fouilhé and Boulmé 2014] to make determinism
unprovable

Impure computation , Coq code embedding OCaml code
• Axiomatize (in Coq) “A → Prop” as type “ ??A”

to represent “impure computations of type A”
with “(k a)” as proposition “k a”
with formal type A: ??A → A → Prop
read “computation k may return value a”

and usual monad operators
• “ ??A” extracted like “A”.

leo.gourdin@univ-grenoble-alpes.fr 47/30

Features of this approach

Summary of our approach:

• Almost any OCaml function embeddable into Coq.
(e.g. mutable data-structures with aliasing in Coq)

• No formal reasoning on effects, only on results:
foreign functions could have bugs, only their type is ensured.
⇒ Considered as nondeterministic.
e.g. for I/O reasoning, use FreeSpec or InteractionTrees instead.

• OCaml polymorphism provides “theorems-for-free”
(i.e. a form of unary parametricity through Coq extraction)

• Exceptionally: additional axioms on results (e.g. pointer equality)
In this case, the foreign function must be trusted!

leo.gourdin@univ-grenoble-alpes.fr 48/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 49/30

Verified defensive hash-consing factory from pointer equality

Hash-consing of inductive type T consists in memoizing its constructors through a dedicated
factory.

[Six et al. 2020] gives a verified defensive variant of [Filliâtre and Conchon 2006]:
• a polymorphic oracle provides—for any T—an untrusted hash-consing factory of type

T → ? ? T;
• this factory is wrapped into a certified factory dynamically enforcing that each returned

term is structurally equals to its inputs…
• …through a constant-time checking that,

on input (c t1 . . . tn) and output (c ′ t ′1 . . . t
′
m),

we have c = c ′ and that forall i, ti == t ′i

works in practice because of (the non-formalized) invariant:
all ti are already “hash-consed” terms

leo.gourdin@univ-grenoble-alpes.fr 50/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 51/30

Why targetting RISC-V for Strength Reduction?

CompCert is particularly slow on RISC-V.

1 Less work went on this backend;

2 Instruction Set Architecture (ISA) is simpler;

3 Addressing modes are very limited;
e.g. consider a load in C “x = a[i]”, CompCert produces:
On AArch64:

ldr x0, [x0,w1,sxtw#3]

On RISC-V:

slli x6, x11, 3
add x6, x10, x6
ld x6, 0(x6)

4 RISC-V is a good candidate for the future of embedded (and critical) systems.
e.g. NOEL-V for space; openness of hardware; modularity

Porting the LCT’s strength reduction to other backends should be straightforward (∼140 LoC).

leo.gourdin@univ-grenoble-alpes.fr 52/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 53/30

The BTL IR: A syntax-based block representation

fi ::= Bgoto(l)
| Breturn([r])
| Bcall(sig, (r |id),~r , r , l)
| Btailcall(sig, (r |id),~r)

| Bbuiltin(ef , ~br , br , l)

| Bjumptable(r ,~l)

blk ::= BF(fi, iinfo)
| Bnop([iinfo])
| Bop(op,~r , r , iinfo)
| Bload(trap, chk, addr ,~r , r , iinfo)
| Bstore(chk, addr ,~r , r , iinfo)
| Bseq(blk1, blk2)
| Bcond(cond ,~r , blkso, blknot , iinfo)

Keeping a block structure is interesting for at least two reasons:

1 Invariants are checked for blocks instead of every instruction;

2 Block-scoped optimizations (e.g. scheduling) are still compatible.

leo.gourdin@univ-grenoble-alpes.fr 54/30

Two shades of BTL Invariants

⇒ To avoid redundancies in invariants and facilitate their generation by oracles.

An abstract (theorical) representation
Assignments of invariant values (into reg).

(** FPASV: "Finite Parallel Assignment of Symbolic Values" *)
Record fpasv :=

{ fpa_ok: list sval; fpa_reg:> PTree.tree sval;
fpa_wf: ∀ r sv, fpa_reg!r = Some sv → ~(is_input sv) → List.In sv fpa_ok }

A more compact representation
In the set of output registers, we distinguish those not defined in aseq (which satisfy [r:=Sinput r]).

(** CSASV: "Compact Sequence Assignments of Symbolic Values" *)
Record csasv := {

aseq: list (reg * ival);
outputs: Regset.t;

}

leo.gourdin@univ-grenoble-alpes.fr 55/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 56/30

Rewritings & mini-CSE over superblocks on RISC-V (1/3)

1 long foo(int x, char y, long *t) {
2 int z = x / 4096;
3 y = x / 256;
4 t[0] = t[1] * t[2];
5 if (x + z < 7) {
6 if (y < 7)
7 return 421 + t[0];
8 }
9 y = y - z;

10 return x + y - t[0];
11 }

Colors delimit superblocks.

• Sub-optimal ordering

• Macros (in pink) are not expansed

Bop: x4 = x3 >> 12 # 1
Bop: x15 = x3 >> 8 # 2
Bop: x2 = x15 \& 255
Bload: x13 = int64[x1 + 8]
Bload: x14 = int64[x1 + 16]
Bop: x12 = x13 *l x14
Bstore: int64[x1 + 0] = x12
Bop: x11 = x3 + x4
Bcond: (x11 >=s 7) # 3

ifso = [Bgoto: 7]
Bcond: (x2 <s 7) # 4

ifso = [Bgoto: 10]
Bgoto: 7

Non-optimized RISC-V
CompCert code (uncolored is orange)

leo.gourdin@univ-grenoble-alpes.fr 57/30

Rewritings & mini-CSE over superblocks on RISC-V (2/3)
1 long foo(int x, char y, long *t) {
2 int z = x / 4096;
3 y = x / 256;
4 t[0] = t[1] * t[2];
5 if (x + z < 7) {
6 if (y < 7)
7 return 421 + t[0];
8 }
9 y = y - z;

10 return x + y - t[0];
11 }

• No duplications thks to mini-CSE
on the expansion of #3 and #4

• Bad ordering

• Makespan is 14 on U74

Bop: x16 = x3 >> 31 # 1
Bop: x17 = x16 >> 20 # 1
Bop: x18 = x3 + x17 # 1
Bop: x4 = x18 >> 12 # 1
Bop: x20 = x16 >> 24 # 2
Bop: x21 = x3 + x20 # 2
Bop: x15 = x21 >> 8 # 2
Bop: x2 = x15 \& 255
Bload: x13 = int64[x1 + 8]
Bload: x14 = int64[x1 + 16]
Bop: x12 = x13 *l x14
Bstore: int64[x1 + 0] = x12
Bop: x11 = x3 + x4
Bop: x22 = OEaddiw(X0,7) # 3,4
Bcond: (CEbgew(x11 >= x22)) # 3

ifso = [Bgoto: 7]
Bcond: (CEbltw(x2 < x22)) # 4

ifso = [Bgoto: 10]
Bgoto: 7

Pre-processed RISC-V
CompCert code (uncolored is orange)

leo.gourdin@univ-grenoble-alpes.fr 58/30

Rewritings & mini-CSE over superblocks on RISC-V (3/3)
1 long foo(int x, char y, long *t) {
2 int z = x / 4096;
3 y = x / 256;
4 t[0] = t[1] * t[2];
5 if (x + z < 7) {
6 if (y < 7)
7 return 421 + t[0];
8 }
9 y = y - z;

10 return x + y - t[0];
11 }

We won 5 cycles!

• Better ordering

• Makespan is reduced to 9 thanks to avoided
stalls

Bop: x16 = x3 >>s 31
Bload: x13 = int64[x1 + 8]
Bop: x17 = x16 >>u 20
Bload: x14 = int64[x1 + 16]
Bop: x18 = x3 + x17
Bop: x20 = x16 >> 24
Bop: x4 = x18 >>s 12
Bop: x21 = x3 + x20
Bop: x15 = x21 >>s 8
Bop: x12 = x13 *l x14
Bop: x2 = x15 \& 255
Bop: x11 = x3 + x4
Bop: x22 = OEaddiw(X0,7)
Bstore: int64[x1 + 0] = x12
Bcond: (CEbgew(x11 >= x22))

ifso = [Bgoto: 7]
Bcond: (CEbltw(x2 < x22))

ifso = [Bgoto: 10]
Bgoto: 7

Optimized RISC-V CompCert code
(uncolored is orange)

leo.gourdin@univ-grenoble-alpes.fr 59/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 60/30

Bit vector predicates for LCT (non-exhaustive list)

Candidates (of the form n ≡ v := t at node n, writing term t in variable v) are operations or loads.
Boolean equation systems to solve for each node, and for each candidate:

• Transparency: the node does not alter the candidate expr.;

• Comp: the node contains a computation of the candidate;

• Down-safety: a computation t at n does not introduce a new value on a terminating path starting
at n;

• Up-safety: same for every path leading at n;

• Earliestness: can’t be placed earlier without breaking the safety property;

• Delayability: possibility to move the inserted value from its earliest down-safe point as far as
possible in the direction of the control-flow;

• Latestness: optimality of delayability (maximum delay);

• Isolatedness: the inserted computation would be isolated in its block;

• Insert: Candidate should be inserted at this node;

• Replace: Candidate should be replaced at this node.

leo.gourdin@univ-grenoble-alpes.fr 61/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 62/30

Diagrammatic proof of blockstep simulation

stk stk stk′ stk′ stk′
f f f′ f′ f′
S1

(1) Correctness of
Symbolic Exec.

over ibs

S2

Isiss Isist

ε

(0) Symbolic Simu.
of ibs by ibt)

ssH �s sss ssG �t sst

S′1

(4) Exactness of
Symbolic Exec.

over ibt

S′2

SG ≡t S′G

(2) Correctness of
Symbolic Exec.
over G & H

(3)

(3): Correctness of the modulo liveness relation

e

e

e

ee
≡t∼gm

ibs

ciG
ciH

G

H

ibt

leo.gourdin@univ-grenoble-alpes.fr 63/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 64/30

An idea of the development size

In number of significant lines of code (sloc)…

Project Defs Proofs
BTL IR 252 20
BTL projection checker 296 121
RTL → BTL 313 377
BTL → RTL 146 249
BTL SE theory 1844 1862
BTL SE refinement 1612 1411
BTL rewriting engine (RISC-V only) 1209 1038
BTL passes module 122 60
Total 5794 5138
Project Ocaml Coq
BTL oracles & framework 3332 10 932
AArch64 scheduling & peephole 1157 11 171
Total 4489 22 103

LCT oracle combining code motion & strength reduction: 2000 sloc
leo.gourdin@univ-grenoble-alpes.fr 65/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 66/30

Compilation time of slowest CompCert passes

ASCI_Purple/ mafft/ glpk-4.65/ spass/
0

50

100

150

200

250

Ti
m

e
(s

)

11

17
11

12 11
12

32

32

12

18
24

13

26

46
65

17 24

71 49

19 11

29

15

Scores
Parsing
Redundancy elimination
BTL SBpasses
Interval propagation
Constant propagation
Int promotion
CSE
CSE3
BTL BBpasses
Register allocation

leo.gourdin@univ-grenoble-alpes.fr 67/30

Results zooming on the LCT impact

GCC, Base=(scheduling + CSE3 + unroll single), and Base+LCT versus mainline CompCert
on RISC-V U74, higher is better

Setup GCC -O1 Base Base + LCT
LLVMtest/fpconvert +24.22% +7.9% +17.15%
LLVMtest/matmul +15.9% +115.05% +144.11%
LLVMtest/nbench_bf +74.58% +11.84% +24.51%
MiBench/jpeg +27.75% +20.62% +24.75%
MiBench/sha +92.43% +45.68% +51.73%
MiBench/stringsearch +133.34% +40.28% -10.15%
PolyBench/* +64.05% +38.06% +46.23%
TACLeBench/bsort +49.04% +9% +33.16%
TACLeBench/deg2rad +56.75% +41.5% +50.28%
TACLeBench/md5 +42.18% +18.59% +47.93%

leo.gourdin@univ-grenoble-alpes.fr 68/30

Go back to slide 31.

leo.gourdin@univ-grenoble-alpes.fr 69/30

	Introduction
	Motivating Example
	Lazy Code Transformations
	Symbolic Simulation
	Evaluation & Conclusion
	Appendices
	Peephole & Postpass on AArch64
	If-lifting
	Loop Unrollings
	CompCert's Trusted Computing Base
	Safe translation validation in Coq
	Hash-consing
	Why on RISC-V?
	BTL syntax & semantics
	RISC-V macros expansions & mini-CSE
	Predicates for Lazy Code Transformations
	Diagrammatic proof of blockstep simulation
	Development size
	More benchmark results

